下列四个函数中,在区间(0,1)上为减函数的是( ) A.y=log2 B. C. D. |
|
已知全集U=R,集合A={x|x2-2x>0},B={x|y=lg(x-1)},则(CuA)∩B等于( ) A.{x|x>2或x<0} B.{x|1<x<2} C.{x|1≤x≤2} D.{x|1<x≤2} |
|
已知复数z=,则复数z的共轭复数为( ) A.1+i B.-1+i C.1-i D.-1-i |
|
已知数列{an}中,a1=1,且点P(an,an+1)(n∈N*)在直线x-y+1=0上. (1)求数列{an}的通项公式; (2)若函数,求函数f(n)的最小值; (3)设表示数列{bn}的前项和.试问:是否存在关于n的整式g(n),使得S1+S2+S3+…+Sn-1=(Sn-1)•g(n)对于一切不小于2的自然数n恒成立?若存在,写出g(n)的解析式,并加以证明;若不存在,试说明理由. |
|
已知A,B,C是椭圆m:+=1(a>b>0)上的三点,其中点A的坐标为(2,0),BC过椭圆m的中心,且,且||=2||. (1)求椭圆m的方程; (2)过点M(0,t)的直线l(斜率存在时)与椭圆m交于两点P,Q,设D为椭圆m与y轴负半轴的交点,且||=||.求实数t的取值范围. |
|
已知f(x)=ax-ln(-x),x∈(-e,0),,其中e是自然常数,a∈R. (1)讨论a=-1时,f(x)的单调性、极值; (2)求证:在(1)的条件下,. (3)是否存在实数a,使f(x)的最小值是3,如果存在,求出a的值;如果不存在,说明理由. |
|
如图,在三棱锥P-ABC中,PA=3,AC=AB=4,PB=PC=BC=5,D、E分别是BC、AC的中点,F为PC上的一点,且PF:FC=3:1. (1)求证:PA⊥BC; (2)试在PC上确定一点G,使平面ABG∥平面DEF; (3)在满足(2)的情况下,求二面角G-AB-C的平面角的正切值. |
|
东莞市政府要用三辆汽车从新市政府把工作人员接到老市政府,已知从新市政府到老市政府有两条公路,汽车走公路①堵车的概率为,不堵车的概率为;汽车走公路②堵车的概率为p,不堵车的概率为1-p.若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响. (1)若三辆汽车中恰有一辆汽车被堵的概率为,求走公路②堵车的概率; (2)在(1)的条件下,求三辆汽车中被堵车辆的个数ξ的分布列和数学期望. |
|
在锐角△ABC中,已知内角A、B、C的对边分别为a、b、c.向量,,且向量、共线. (1)求角B的大小; (2)如果b=1,求△ABC的面积V△ABC的最大值. |
|
如图,已知PA、PB是圆O的切线,A、B分别为切点,C为圆O上不与A、B重合的另一点,若∠ACB=120°,则∠APB= . |
|