函数y=f(x)的图象如图所示,则y=f(x)的解析式为( ) A.y=sin2x-2 B.y=2cos3x-1 C. D. |
|
命题p:∀x∈[1,2],x2-a≥0;命题q:∃x∈R,x2+2ax+2-a=0,若命题p且q为真,则a取值范围为( ) A.a≤-2或a=1 B.a≤-2或1≤a≤2 C.a≥1 D.-2a≤a≤1 |
|
若Sn是等差数列{an}的前n项和,有S8-S3=10,则S11的值为( ) A.、22 B.20 C.16 D.14 |
|
已知△ABC中,a=k,b=2,B=45°,若三角形有两解,则实数k的取值范围为( ) A.(2,+∞) B.(-∞,2) C. D. |
|
设全集U=R,A={x|x(x+3)<0},B={x|x<-1},则图中阴影部分表示的集合为( ) A.(-1,0) B.(-3,-1) C.[-1,0) D.(-∞,-1) |
|
已知椭圆C的中心在坐标原点,离心率,且其中一个焦点与抛物线的焦点重合. (1)求椭圆C的方程; (2)过点S(,0)的动直线l交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过点T,若存在,求出点T的坐标;若不存在,请说明理由. |
|
已知f(x)=x3+mx2-x+2(m∈R). (1)如果函数f(x)的单调递减区间为(,1),求函数f(x)的解析式; (2)若f(x)的导函数为f′(x),对任意x∈(0,+∞),不等式f′(x)≥2xlnx-1恒成立,求实数m的取值范围. |
|
数列{an}中,a1=1,且an+1=Sn(n≥1,n∈N*),数列{bn}是等差数列,其公差d>0,b1=1,且b3、b7+2、3b9成等比数列. (Ⅰ)求数列{an}、{bn}的通项公式; (Ⅱ)设数列{cn}满足cn=anbn,求{cn}的前n项和Tn. |
|
如图,在直三棱柱ABC-A1B1C1中,底面△ABC为等腰直角三角形,∠B=90°,D为棱BB1上一点,且平面DA1C⊥平面AA1C1C. (1)求证:D点为棱BB1的中点; (2)若二面角A-A1D-C的平面角为60°,求的值. |
|
为迎接2010年上海世界博览会的召开,上海某高校对本校报名参加志愿者服务的学生进行英语.日语口语培训,每名志愿者可以选择参加一项培训.参加两项培训或不参加培训.已知参加过英语培训的有75%,参加过日语培训的有60%,假设每名志愿者对培训项目的选择是相互独立的,且各人的选择相互之间没有影响. (1)从该高校志愿者中任选1名,求这人参加过本次口语培训的概率; (2)从该高校志愿者中任选3名,求至少有2人参加过本次口语培训的概率. |
|