设S,T是两个非空集合,且S∉T,T∉S,令X=S∩T,那么S∪X等于( ) A.X B.T C.φ D.S |
|
某水库堤坝因年久失修,发生了渗水现象,当发现时已有200m2的坝面渗水.经测算知渗水现象正在以每天4m2的速度扩散.当地政府积极组织工人进行抢修.已知每个工人平均每天可抢修渗水面积2m2,每人每天所消耗的维修材料费75元,劳务费50元,给每人发放50元的服装补贴,每渗水1m2的损失为250元.现在共派去x名工人,抢修完成共用n天. (Ⅰ)写出n关于x的函数关系式; (Ⅱ)要使总损失最小,应派去多少名工人去抢修(总损失=渗水损失+政府支出). |
|
已知数列{an}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16 (1)求数列{an}的通项公式; (2)数列{an}和数列{bn}满足等式an=(n∈N*),求数列{bn}的前n项和Sn. |
|
已知直三棱柱ABC-A1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,D、E、F分别为B1A、C1C、BC的中点. (I)求证:DE∥平面ABC; (Ⅱ)求证:B1F⊥平面AEF; (Ⅲ)求二面角B1-AE-F的余弦值. |
|
已知函数f(x)=sinx+cosx,f′(x)是f(x)的导函数. (1)求函数F(x)=f(x)f′(x)+[f(x)]2的最大值和最小正周期; (2)若f(x)=2f'(x),求的值. |
|
在实数数列{an}中,已知a1=0,|a2|=|a1-1|,|a3|=|a2-1||,…,|an|=|an-1-1|则a1+a2+a3+a4的最大值为 . | |
已知向量=(2,1),=(1,7),=(5,1),设X是直线OP上的一点(O为坐标原点),那么的最小值是 . | |
设x、y满足约束条件,则z=3x+2y的最大值是 . | |
若k∈Z,则椭圆的离心率是 . | |
关于直线m,n与平面α,β,有以下四个命题: ①若m∥a,n∥β且a∥β,则m∥n;②若m⊥a,n⊥β且a⊥β,则m⊥n; ③若m⊥a,n∥β且a∥β,则m⊥n;④若m∥a,n⊥β且a⊥β,则m∥n. 其中真命题的序号是 . |
|