如图,已知椭圆C:+=1(a>b>0)的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似的,则称这两个椭圆是“相似椭圆”,且三角形的相似比即为椭圆的相似比. (1)已知椭圆C1:+y2=1和C2:+=1,判断C2与C1是否相似,如果相似则求出C2与C1的相似比,若不相似请说明理由; (2)已知直线l:y=x+1,在椭圆Cb上是否存在两点M、N关于直线l对称,若存在,则求出函数f(b)=|MN|的解析式. |
|
以知椭圆的两个焦点分别为F1(-c,0)和F2(c,0)(c>0),过点的直线与椭圆相交与A,B两点,且F1A∥F2B,|F1A|=2|F2B|. (1)求椭圆的离心率; (2)求直线AB的斜率; (3)设点C与点A关于坐标原点对称,直线F2B上有一点H(m,n)(m≠0)在△AF1C的外接圆上,求的值. |
|
在平面直角坐标系xOy中,椭圆的焦距为2c,以O为圆心,a为半径作圆M,若过作圆M的两条切线相互垂直,则椭圆的离心率为 . | |
椭圆(a>b>0)的四个顶点为A、B、C、D,若四边形ABCD的内切圆恰好过椭圆的焦点,则椭圆的离心率e= . | |
在△ABC中,AB=BC,.若以A,B为焦点的椭圆经过点C,则该椭圆的离心率e= . | |
如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P变轨进入以月球球心F为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P点第三次变轨进入以F为圆心的圆形轨道Ⅲ绕月飞行,若用2c1和2c2分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用2a1和2a2分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①a1+c1=a2+c2;②a1-c1=a2-c2;③c1a2>a1c2;④. 其中正确式子的序号是( ) A.①③ B.②③ C.①④ D.②④ |
|
过椭圆+=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若∠F1PF2=60°,则椭圆的离心率为( ) A. B. C. D. |
|
已知F1、F2是椭圆的两个焦点,满足•=0的点M总在椭圆内部,则椭圆离心率的取值范围是( ) A.(0,1) B.(0,] C.(0,) D.[,1) |
|
若椭圆的左、右焦点分别为F1、F2,抛物线y2=2bx的焦点为F.若,则此椭圆的离心率为( ) A. B. C. D. |
|
如果一个椭圆的长轴长是短轴长的2倍,那么这个椭圆的离心率为( ) A. B. C. D. |
|