已知函数f(x)=x2ln|x|, (Ⅰ)判断函数f(x)的奇偶性; (Ⅱ)求函数f(x)的单调区间; (Ⅲ)若关于x的方程f(x)=kx-1有实数解,求实数k的取值范围. |
|
已知f(x)是二次函数,f′(x)是它的导函数,且对任意的x∈R,f′(x)=f(x+1)+x2恒成立. (1)求f(x)的解析表达式; (2)设t>0,曲线C:y=f(x)在点P(t,f(t))处的切线为l,l与坐标轴围成的三角形面积为S(t).求S(t)的最小值. |
|
设函数f(x)=x2+bln(x+1), (1)若对定义域的任意x,都有f(x)≥f(1)成立,求实数b的值; (2)若函数f(x)在定义域上是单调函数,求实数b的取值范围. |
|
已知函数f(x)=x2+mx+n的图象过点(1,3),且f(-1+x)=f(-1-x)对任意实数都成立,函数y=g(x)与y=f(x)的图象关于原点对称. (1)求f(x)与g(x)的解析式; (2)若F(x)=g(x)-λf(x)在[-1,1]上是增函数,求实数λ的取值范围. |
|
设函数f(x)=x|x-1|+m,g(x)=lnx. (1)当m>1时,求函数y=f(x)在[0,m]上的最大值; (2)记函数p(x)=f(x)-g(x),若函数p(x)有零点,求m的取值范围. |
|
设函数f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)-f'(x)是奇函数. (Ⅰ)求b,c的值. (Ⅱ)求g(x)的单调区间与极值. |
|
已知函数. (1)若函数f(x)在[1,+∞)上为增函数,求正实数a的取值范围; (2)当a=1时,求f(x)在上的最大值和最小值; (3)当a=1时,求证:对大于1的任意正整数n,都有. |
|
已知函数f(x)=-x3+ax2+bx+c在(-∞,0)上是减函数,在(0,1)上是增函数,函数f(x)在R上有三个零点,且1是其中一个零点. (1)求b的值; (2)求f(2)的取值范围; (3)试探究直线y=x-1与函数y=f(x)的图象交点个数的情况,并说明理由. |
|
已知a∈R,函数,g(x)=(lnx-1)ex+x(其中e为自然对数的底数). (1)求函数f(x)在区间(0,e]上的最小值; (2)是否存在实数x∈(0,e],使曲线y=g(x)在点x=x处的切线与y轴垂直?若存在,求出x的值;若不存在,请说明理由. |
|
已知函数,则f[f(2010)]= . | |