给定实数a(),设函数f(x)=2x+(1-2a)ln(x+a)(x>-a,x∈R),f(x)的导数f′(x)的图象为C1,C1关于直线y=x对称的图象记为C2. (Ⅰ)求函数y=f′(x)的单调区间; (Ⅱ)对于所有整数a(a≠-2),C1与C2是否存在纵坐标和横坐标都是整数的公共点?若存在,请求出公共点的坐标;若不若存在,请说明理由. |
|
已知数列{an}的前n项和Sn=2an-3•2n+4,n=1,2,3,…. (Ⅰ)求数列{an}的通项公式; (Ⅱ)设Tn为数列{Sn-4}的前n项和,求Tn. |
|
在直角坐标平面内,定点F(-1,0)、F′(1,0),动点M,满足条件. (Ⅰ)求动点M的轨迹C的方程; (Ⅱ)过点F的直线交曲线C交于A,B两点,求以AB为直径的圆的方程,并判定这个圆与直线x=-2的位置关系. |
|
如图,已知直四棱柱ABCD-A1B1C1D1的底面是边长为2、∠ADC=120°的菱形,Q是侧棱DD1(DD1>)延长线上的一点,过点Q、A1、C1作菱形截面QA1PC1交侧棱BB1于点P.设截面QA1PC1的面积为S1,四面体B1-A1C1P的三侧面△B1A1C1、△B1PC1、△B1A1P面积的和为S2,S=S1-S2. (Ⅰ)证明:AC⊥QP; (Ⅱ)当S取得最小值时,求cos∠A1QC1的值. |
|
班级联欢时,主持人拟出了如下一些节目:跳双人舞、独唱、朗诵等,指定3个男生和2个女生来参与,把5个人分别编号为1,2,3,4,5,其中1,2,3号是男生,4,5号是女生,将每个人的号分别写在5张相同的卡片上,并放入一个箱子中充分混合,每次从中随机地取出一张卡片,取出谁的编号谁就参与表演节目. (I)为了选出2人来表演双人舞,连续抽取2张卡片,求取出的2人不全是男生的概率; (Ⅱ)为了选出2人分别表演独唱和朗诵,抽取并观察第一张卡片后,又放回箱子中,充分混合后再从中抽取第二张卡片,求:独唱和朗诵由同一个人表演的概率. |
|
如图所示,正在亚丁湾执行护航任务的某导弹护卫舰,突然收到一艘商船的求救信号,紧急前往相关海域.到达相关海域O处后发现,在南偏西20°、5海里外的洋面M处有一条海盗船,它正以每小时20海里的速度向南偏东40°的方向逃窜.某导弹护卫舰当即施放载有突击队员的快艇进行拦截,快艇以每小时30海里的速度向南偏东θ°的方向全速追击.请问:快艇能否追上海盗船?如果能追上,请求出sin(θ°+20°)的值;如果未能追上,请说明理由.(假设海面上风平浪静、海盗船逃窜的航向不变、快艇运转正常无故障等) |
|
如图,已知PB是⊙O的切线,A是切点,D是弧AC上一点,若∠BAC=70°,则∠ADC= . | |
设曲线C的参数方程为是参数,a>0),若曲线C与直线3x+4y-5=0只有一个交点,则实数a的值是 . | |
设平面上n个圆周最多把平面分成f(n)片(平面区域),则f(2)= ,f(n)= .(n≥1,n是自然数) | |
关于函数的流程图如下,现输入区间[a,b],则输出的区间是 . |
|