某海滨城市坐落在一个三角形海域的顶点O处(如图),一条海岸线AO在城市O的正东方向,另一条海岸线OB在城市O北偏东方向,位于城市O北偏东方向15km的P处有一个美丽的小岛.旅游公司拟开发如下一条旅游观光线路:从城市O出发沿海岸线OA到达C处,再从海面直线航行,途经小岛P到达海岸线OB的D处,然后返回城市O.为了节省开发成本,要求这条旅游观光线路所围成的三角形区域面积最小,问C处应选址何处?并求这个三角形区域的最小面积.
|
|
已知圆M:x2+(y-2)2=1,设点B,C是直线l:x-2y=0上的两点,它们的横坐标分别是t,t+4(t∈R),点P在线段BC上,过P点作圆M的切线PA,切点为A. (1)若t=0,,求直线PA的方程; (2)经过A,P,M三点的圆的圆心是D,求线段DO长的最小值L(t).
|
|
在在四棱锥O-ABCD中,底面ABCD为菱形,OA⊥平面ABCD,E为OA的中点,F为BC的中点,求证: (1)平面BDO⊥平面ACO; (2)EF∥平面OCD.
|
|
定义函数f(x)=[x[x]],其中[x]表示不超过x的最大整数,如:[1.5]=1,[-1.3]=-2,当x∈[0,n)(n∈N*)时,设函数f(x)的值域为A,记集合A中的元素个数为an,则式子[]的最小值为 .
|
|
当θ取遍所有值时,直线所围成的图形面积为 .
|
|
已知实数x,y满足约束条件:x+2y<5,2x+y<4,x>0,y>0,则区域内的整数点有 个.
|
|
已知椭圆的左、右焦点分别为F1、F2,则|F1F2|=2c,点A在椭圆上且,则椭圆的离心率为 .
|
|