在等比数列{an}中,若公比q=4,前3项的和等于21,则该数列的通项公式an= . | |
对于具有相同定义域D的函数f(x)和g(x),若存在函数h(x)=kx+b(k,b为常数)对任给的正数m, 存在相应的x∈D使得当x∈D且x>x时,总有,则称直线l:y=ka+b为曲线y=f(x)和y=g(x)的“分渐进性”.给出定义域均为D={x|x>1}的四组函数如下: ①f(x)=x2,g(x)=②f(x)=10-x+2,g(x)=③f(x)=,g(x)=④f(x)=,g(x)=2(x-1-e-x) 其中,曲线y=f(x)和y=g(x)存在“分渐近线”的是( ) A.①④ B.②③ C.②④ D.③④ |
|
对于复数a,b,c,d,若集合S={a,b,c,d}具有性质“对任意x,y∈S,必有xy∈S”,则当时,b+c+d等于( ) A.1 B.-1 C.0 D.i |
|
设不等式组所表示的平面区域是Ω1,平面区域是Ω2与Ω1关于直线3x-4y-9=0对称,对于Ω1中的任意一点A与Ω2中的任意一点B,|AB|的最小值等于( ) A. B.4 C. D.2 |
|
若点O和点F(-2,0)分别是双曲线的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为( ) A. B. C. D. |
|
如图,若Ω是长方体ABCD-A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确的是( ) A.EH∥FG B.四边形EFGH是矩形 C.Ω是棱柱 D.Ω是棱台 |
|
阅读如图所示的程序框图,运行相应的程序,输出的i值等于( ) A.2 B.3 C.4 D.5 |
|
函数的零点个数为( ) A.3 B.2 C.1 D.0 |
|
设等差数列{an}的前n项和为Sn,若a1=-11,a4+a6=-6,则当Sn取最小值时,n等于( ) A.6 B.7 C.8 D.9 |
|
以抛物线y2=4x的焦点为圆心,且过坐标原点的圆的方程为( ) A.x2+y2+2x=0 B.x2+y2+x=0 C.x2+y2-x=0 D.x2+y2-2x=0 |
|