“x>1”是“x2>x”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 |
|
已知全集U={1,2,3,4,5},集合A={1,3},B={3,4,5},则集合CU(A∩B)=( ) A.{3} B.{4,5} C.{3,4,5} D.{1,2,4,5} |
|
已知函数f(x)=|3x-2|+x (1)求函数f(x)的值域; (2)若g(x)=|x+1|,解不等式f(x)>g(x). |
|
曲线C1极坐标方程为ρ=4cosθ,直线C2参数方程为(t为参数). (1)将C1化为直角坐标方程. (2)C1与C2是否相交?若相交求出弦长,不相交说明理由. |
|
已知△ABC中,∠ACB=90°,O是AC上一点,以O为圆心,OC为半径的圆交AC于D,与AB切于E,若AD=2,AE=4,求BE的长. |
|
已知f(x)=ln(x+1)-ax.(a∈R) (1)求y=f(x)的单调区间; (2)当a=1时,求f(x)在定义域上的最大值; (3)求证:. |
|
已知,动点P满足|PF1|+|PF2|=4,记动点P的轨迹为E. (1)求E的方程; (2)曲线E的一条切线为l,过F1,F2作l的垂线,垂足分别为M,N,求|F1M|•|F2N|的值; (3)曲线E的一条切线为l,与x轴分别交于A,B两点,求|AB|的最小值,并求此时切线的斜率. |
|
四棱锥P-ABCD中,底面ABCD是边长为2的正方形,PB⊥BC,PD⊥CD,且PA=2,点E满足. (1)求证:PA⊥平面ABCD; (2)求二面角E-AE-D的余弦值. |
|
甲、乙两位学生参加数学竞赛培训,现分别从他们的培训期间参加的若干次预赛成中随机抽取8次,记录如下 甲:82,91,79,78,95,88,83,84;乙:92,95,80,75,83,80,90,85. (1)画出甲、乙两位学生成绩的茎叶图; (2)现要从中选派一人参加数学竞赛,从统计学角度,你认为派哪位学生参加合请说明理由. (3)若将频率视为概率,对学生甲在今后的三次数学竞赛成绩进行预测,记这三次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望Eξ. |
|
海岛B上有一座为10米的塔,塔顶的一个观测站A,上午11时测得一游船位于岛北偏东15°方向上,且俯角为30°的C处,一分钟后测得该游船位于岛北偏西75°方向上,且俯角45°的D处.(假设游船匀速行驶) (1)求该船行使的速度(单位:米/分钟) (2)又经过一段时间后,油船到达海岛B的正西方向E处,问此时游船距离海岛B多远. |
|