可行域D:与可行域E:的关系是( ) A.D=E B.D⊂E C.E⊂D D.E⊆D |
|
直线xtan的倾斜角是( ) A. B.- C. D. |
|
已知直线C1(t为参数),C2(θ为参数), (Ⅰ)当α=时,求C1与C2的交点坐标; (Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线. |
|
已知P为半圆C:(θ为参数,0≤θ≤π)上的点,点A的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与C的弧的长度均为. (1)以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标; (2)求直线AM的参数方程. |
|
在极坐标系中,圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值. |
|
(选修4-4:坐标系与参数方程) 在直角坐标系xoy中,直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为. (Ⅰ)求圆C的直角坐标方程; (Ⅱ)设圆C与直线l交于点A、B,若点P的坐标为,求|PA|+|PB|. |
|
参数方程(a为参数)化成普通方程为 . | |
已知圆C的参数方程为(a为参数)以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为psinθ=1,则直线l与圆C的交点的直角坐标系为 . | |
在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ(cosθ+sinθ)=1与ρ(sinθ-cosθ)=1的交点的极坐标为 . | |
在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sinθ与ρcosθ=-1的交点的极坐标为 . | |