在△ABC中,角A、B、C的对边分别为a、b、c,已知A=,a=,b=1,则c=( ) A.1 B.2 C.-1 D. |
|
如果全集U=R,A={x|2<x≤4},B={3,4},则A∩(∁UB)=( ) A.(2,3)∪(3,4) B.(2,4) C.(2,3)∪(3,4] D.(2,4] |
|
已知△ABC的三边长都是有理数. (1)求证cosA是有理数; (2)求证:对任意正整数n,cosnA是有理数. |
|
某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元.设生产各种产品相互独立. (1)记X(单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X的分布列; (2)求生产4件甲产品所获得的利润不少于10万元的概率. |
|
本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A:AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB=2BC. B:在平面直角坐标系xOy中,已知点A(0,0),B(-2,0),C(-2,1).设k为非零实数,矩阵M=,N=,点A、B、C在矩阵MN对应的变换下得到点分别为A1、B1、C1,△A1B1C1的面积是△ABC面积的2倍,求k的值. C:在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值. D:设a、b是非负实数,求证:. |
|
设f(x)是定义在区间(1,+∞)上的函数,其导函数为f′(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a),设函数f(x)=,其中b为实数. (1)求证:函数f(x)具有性质P(b); (2)求函数f(x)的单调区间. |
|
设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列是公差为d的等差数列. (1)求数列{an}的通项公式(用n,d表示); (2)设c为实数,对满足m+n=3k且m≠n的任意正整数m,n,k,不等式Sm+Sn>cSk都成立.求证:c的最大值为. |
|
在平面直角坐标系xoy中,如图,已知椭圆的左、右顶点为A、B,右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0. (1)设动点P满足PF2-PB2=4,求点P的轨迹; (2)设,求点T的坐标; (3)设t=9,求证:直线MN必过x轴上的一定点(其坐标与m无关). |
|
某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角∠ABE=α,∠ADE=β. (1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,请据此算出H的值; (2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使α与β之差较大,可以提高测量精确度.若电视塔的实际高度为125m,试问d为多少时,α-β最大? |
|
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°. (1)求证:PC⊥BC; (2)求点A到平面PBC的距离. |
|