若正方体的棱长为,则以该正方体各个面的中心为顶点的凸多面体的体积为( ) A. B. C. D. |
|
已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 |
|
设直线m与平面α相交但不垂直,则下列说法中正确的是( ) A.在平面α内有且只有一条直线与直线m垂直 B.过直线m有且只有一个平面与平面α垂直 C.与直线m垂直的直线不可能与平面α平行 D.与直线m平行的平面不可能与平面α垂直 |
|
设有抛物线C:y=-x2+x-4,通过原点O作C的切线y=kx,使切点P在第一象限. (1)求k的值; (2)过点P作切线的垂线,求它与抛物线的另一个交点Q的坐标. |
|
设t≠0,点P(t,0)是函数f(x)=x3+ax与g(x)=bx2+c的图象的一个公共点,两函数的图象在点P处有相同的切线.试用t表示a,b,c. |
|
求曲线f(x)=x3-3x2+2x过原点的切线方程. |
|
在平面直角坐标系xOy中,点P在曲线C:y=x3-10x+3上,且在第二象限内,已知曲线C在点P处的切线斜率为2,则点P的坐标为 . | |
若曲线f(x)=ax2+lnx存在垂直于y轴的切线,则实数a的取值范围是 . | |
如图所示,函数f(x)的图象是折线段ABC,其中A,B,C的坐标分别为(0,4),(2,0),(6,4),则f(f(0))= .(用数字作答) | |
设函数f(x)=x3+x2+tanθ,其中θ∈[0,],则导数f′(1)的取值范围是( ) A.[-2,2] B.[,] C.[,2] D.[,2] |
|