对变量x、y有观测数据(xi,yi)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(ui,vi)(i=1,2,…,10),得散点图2.由这两个散点图可以判断( ) A.变量x与y正相关,u与v正相关 B.变量x与y正相关,u与v负相关 C.变量x与y负相关,u与v正相关 D.变量x与y负相关,u与v负相关 |
|
某校在高二年级开设选修课,其中数学选修课开了三个班.选课结束后,有四名选修英语的同学要求改修数学,但数学选修每班至多可再接收两名同学,那么安排好这四名同学的方案有( ) A.72种 B.54种 C.36种 D.18种 |
|
已知定义在R上的函数f(x)=x2(ax-3),其中a为常数. (1)若x=1是函数f(x)的一个极值点,求a的值; (2)若函数f(x)在区间(-1,0)上是增函数,求a的取值范围; (3)若函数g(x)=f(x)+f′(x),x∈[0,2],在x=0处取得最大值,求正数a的取值范围. |
|
已知数列{an},其前n项和Sn满足Sn+1=2λSn+1(λ是大于0的常数),且a1=1,a3=4. (1)求λ的值; (2)求数列{an}的通项公式an; (3)设数列{nan}的前n项和为Tn,求Tn. |
|
已知抛物线C:y=ax2,点P(1,-1)在抛物线C上,过点P作斜率为k1、k2的两条直线,分别交抛物线C于异于点P的两点A(x1,y1),B(x2,y2),且满足k1+k2=0. (I)求抛物线C的焦点坐标; (II)若点M满足,求点M的轨迹方程. |
|
某工厂为了保障安全生产,每月初组织工人参加一次技能测试.甲、乙两名工人通过每次测试的概率分别是和.假设两人参加测试是否通过相互之间没有影响. (I)求甲工人连续3个月参加技能测试至少1次未通过的概率; (II)求甲、乙两人各连续3个月参加技能测试,甲工人恰好通过2次且乙工人恰好通过1次的概率; (III)工厂规定:工人连续2次没通过测试,则被撤销上岗资格.求乙工人恰好参加4次测试后被撤销上岗资格的概率. |
|
如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=2,D是AB的中点. (1)求AC1与平面B1BCC1所成角的正切值; (2)求证:AC1∥平面B1DC; (3)已知E是A1B1的中点,点P为一动点,记PB1=x.点P从E出发,沿着三棱柱的棱,按照E→A1→A的路线运动到点A,求这一过程中三棱锥P-BCC1的体积表达式V(x). |
|
已知向量=(tanx,1),=(sinx,cosx),其中=•. (I)求函数f(x)的解析式及最大值; (II)若,求的值. |
|
如图所示,△ABC中,AB=AC=2,∠B1AB=∠B1BA=30°,过B1作B1A1∥BA,过A1作A1B2∥AB1,过B2作B2A2∥B1A1,过A2作A2B3∥A1B2,过B3作B3A3∥B2A2,….若将线段BnAn的长度记为an,线段AnBn+1的长度记为bn,(n=1,2,3…),则a1+b1= ,= . |
|
定义在R上的函数f(x)满足f(x+1)=-f(x),且f(x)=,则f(3)= . | |