相关试题
当前位置:首页 > 高中数学试题
已知函数f(x)=ln2(1+x)+2ln(1+x)-2x.
(I)证明函数f(x)在区间(0,1)上单调递减;
(II)若不等式manfen5.com 满分网≤e2对任意的n∈N*都成立,(其中e是自然对数的底数),求实数a的最大值.
已知点M是离心率是manfen5.com 满分网的椭圆C:manfen5.com 满分网(a>b>0)上一点,过点M作直线MA、MB交椭圆C于A,B两点,且斜率分别为k1,k2
(I)若点A,B关于原点对称,求k1•k2的值;
(II)若点M的坐标为(0,1),且k1+k2=3,求证:直线AB过定点;并求直线AB的斜率k的取值范围.
如图所示,在棱长为4的正方体ABCD-A1B1C1D1中,点E是棱CC1的中点.
(I)求三棱锥D1-ACE的体积;
(II)求异面直线D1E与AC所成角的余弦值;
(III)求二面角A-D1E-C的正弦值.

manfen5.com 满分网
甲、乙两人玩数字游戏,先由甲任想一个数字记为a,再由乙猜甲刚才想的数字,把乙想的数字记为b,且a,b∈{1,2,3,4,5,6},记ξ=|a-b|.
(I)求ξ的分布列及期望;
(II)若ξ≤1,则称“甲乙心有灵犀”,求“甲乙心有灵犀”的概率.
在△ABC中,角A、B、C所对的边分别为a、b、c,且manfen5.com 满分网
(Ⅰ)求manfen5.com 满分网的值;
(Ⅱ)若manfen5.com 满分网,求bc的最大值.
如图,manfen5.com 满分网,现将△ADC沿DC边折起,使二面角A-DC-B的大小为60°,此时直线AB与平面BCD所成角的正弦值为   
manfen5.com 满分网
数列{an}的前n项和为Sn,满足Sn=manfen5.com 满分网,设manfen5.com 满分网,则数列manfen5.com 满分网的前19项和为    
manfen5.com 满分网的展开式中常数项为   
从5名上海世博会志愿者中选3人分别到世博会园区内的瑞士国家馆、西班牙国家馆、意大利国家馆服务,要求每个场馆安排1人,且这5人中甲、乙两人不去瑞士国家馆,则不同的安排方案共有    种.
已知抛物线C:y2=2px(p>0),过点A(manfen5.com 满分网,0)的直线与抛物线C交于M,N两点,且manfen5.com 满分网,过点M,N向直线x=-manfen5.com 满分网作垂线,垂足分别为P,Q,△MAP,△NAQ的面积分别为记为S1与S2,那么( )
A.S1:S2=2:1
B.S1:S2=5:2
C.S1:S2=4:1
D.S1:S2=7:1
共1028964条记录 当前(88173/102897) 首页 上一页 88168 88169 88170 88171 88172 88173 88174 88175 88176 88177 88178 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.