相关试题
当前位置:首页 > 高中数学试题
设全集是U={1,2,3,4,5,6},M={y|y=2x-1,x=1,2,3},N={4,5,6},则N∪CUM=( )
A.{2}
B.{2,4,5,6}
C.{1,2,3,4,6}
D.{4,6}
过抛物线y2=2px(p>0)的对称轴上的定点M(m,0)(m>0),作直线AB与抛物线相交于A,B两点.
(1)试证明A,B两点的纵坐标之积为定值;
(2)若点N是定直线l:x=-m上的任意一点,分别记直线AN,MN,BN的斜率为k1、k2、k3
试求k1、k2、k3之间的关系,并给出证明.

manfen5.com 满分网
已知函数manfen5.com 满分网x2+bx+a(a,b∈R),且其导函数f′(x)的图象过原点.
(Ⅰ)当a=1时,求函数f(x)的图象在x=3处的切线方程;
(Ⅱ)若存在x<0,使得f′(x)=-9,求a的最大值;
(Ⅲ)当a>0时,求函数f(x)的零点个数.
设数列{an}的前n项和为Sn,点P(Sn,an)在直线(2-m)x+2my-m-2=0上,其中m为常数,且m>0.
(Ⅰ)求证:{an}是等比数列,并求其通项an
(Ⅱ)若数列{an}的公比q=f(m),数列{bn}满足b1=a1,bn=f(bn-1),(n∈N+,n≥2),求证:manfen5.com 满分网是等差数列,并求bn
(Ⅲ)设数列{cn}满足cn=bnbn+1,Tn为数列{cn}的前n项和,且存在实数T满足Tn≥T,(n∈N+)求T的最大值.
如图,在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,manfen5.com 满分网
(Ⅰ)求证:平面SAB⊥平面SAD;
(Ⅱ)设SB的中点为M,当manfen5.com 满分网为何值时,能使DM⊥MC?请给出证明.

manfen5.com 满分网
已知复数z1=cosα+isinα,z2=cosβ+isinβ,manfen5.com 满分网
求:(1)求cos(α-β)的值;
(2)若manfen5.com 满分网,且manfen5.com 满分网,求sinα的值.
定义在(0,+∞)上函数f(x)满足f(x)+f(y)=f(xy),且当x>1时,f(x)<0,若不等式manfen5.com 满分网对任意x,y∈(0,+∞)恒成立,则实数a的取值范围是   
已知F1、F2分别为椭圆manfen5.com 满分网+manfen5.com 满分网=1的左、右焦点,P为椭圆上一点,Q是y轴上的一个动点,若|manfen5.com 满分网|-|manfen5.com 满分网|=4,则manfen5.com 满分网•(manfen5.com 满分网-manfen5.com 满分网)=   
已知关于x的一次函数y=mx+n、设集合P={-2,-1,1,2,3}和Q={-2,3},分别从集合P和Q中随机取一个数作为m和n,则函数y=mx+n是增函数的概率    
在三角形ABC中,A=120°,AB=5,BC=7,则manfen5.com 满分网的值为   
共1028964条记录 当前(88175/102897) 首页 上一页 88170 88171 88172 88173 88174 88175 88176 88177 88178 88179 88180 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.