设集合M={0,1,3},N={0,1,7},则M∩N=( )
A.{0,1}
B.(0,1)
C.ϕ
D.{0,1,3,7}
manfen5.com 满分网如图,圆O1与圆O2的半径都是1,O1O2=4,过动点P分别作圆O1.圆O2的切线PM、PN(M.N分别为切点),使得PM=manfen5.com 满分网PN.试建立适当的坐标系,并求动点P的轨迹方程.
manfen5.com 满分网如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ)证明:PA⊥BD;
(Ⅱ)若PD=AD,求二面角A-PB-C的余弦值.
已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*
(1)证明:{an-1}是等比数列;
(2)求数列{Sn}的通项公式,并求出使得Sn+1>Sn成立的最小正整数n.
在△ABC,角A,B,C所对应的边为a,b,c.
(1)若manfen5.com 满分网,求A的值;
(2)若manfen5.com 满分网,求sinC的值.
过点(0,1)的直线与x2+y2=4相交于A、B两点,则|AB|的最小值为   
已知函数manfen5.com 满分网,则满足不等式f(1-x2)>f(2x)的x的范围是   
小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于manfen5.com 满分网,则周末去看电影;若此点到圆心的距离小于manfen5.com 满分网,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为   
在平面直角坐标系xOy中,过坐标原点的一条直线与函数manfen5.com 满分网的图象交于P、Q两点,则线段PQ长的最小值是   
已知z=2x-y,式中变量x,y满足约束条件manfen5.com 满分网,则z的最大值为    
已知|manfen5.com 满分网|=|manfen5.com 满分网|=2,(manfen5.com 满分网+2manfen5.com 满分网)•(manfen5.com 满分网-manfen5.com 满分网)=-2,则manfen5.com 满分网manfen5.com 满分网的夹角为   
已知圆的方程为x2+y2-6x-8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为( )
A.10manfen5.com 满分网
B.20manfen5.com 满分网
C.30manfen5.com 满分网
D.40manfen5.com 满分网
如图,在正三棱柱ABC-A1B1C1中,已知AB=1,D在棱BB1上,且BD=1,则AD与平面AA1C1C所成角的正弦值为( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
若直线y=x+b与曲线manfen5.com 满分网有公共点,则b的取值范围是( )
A.[manfen5.com 满分网manfen5.com 满分网]
B.[manfen5.com 满分网,3]
C.[-1,manfen5.com 满分网]
D.[manfen5.com 满分网,3]
在△ABC中,a,b,c分别为三个内角A、B、C所对的边,设向量manfen5.com 满分网=(b+c,c-a),manfen5.com 满分网=(b,c+a),若向量manfen5.com 满分网manfen5.com 满分网,则角A的大小为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
等差数列{an}的前n项和记为Sn,若a2+a6+a10为一个确定的常数,则下列各数中可以用这个常数表示的是( )
A.S10
B.S11
C.S12
D.S13
若曲线C1:x2+y2-2x=0与曲线C2:y(y-mx-m)=0有四个不同的交点,则实数m的取值范围是( )
A.(-manfen5.com 满分网manfen5.com 满分网
B.(-manfen5.com 满分网,0)∪(0,manfen5.com 满分网
C.[-manfen5.com 满分网manfen5.com 满分网]
D.(-∞,-manfen5.com 满分网)∪(manfen5.com 满分网,+∞)
函数f(x)=manfen5.com 满分网-cosx在[0,+∞)内 ( )
A.没有零点
B.有且仅有一个零点
C.有且仅有两个零点
D.有无穷多个零点
manfen5.com 满分网阅读程序框图,运行相应的程序,则输出i的值为( )
A.3
B.4
C.5
D.6
manfen5.com 满分网”是“tanx=1”成立的( )
A.充分不必要条件
B.必要不充分条件
C.充分条件
D.既不充分也不必要条件
manfen5.com 满分网已知某空间几何体的主视图、侧视图、俯视图均为如图所示的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的表面积为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
若a,b∈R,且ab>0,则下列不等式中,恒成立的是( )
A.a2+b2>2ab
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=( )
A.-manfen5.com 满分网
B.-manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
若f(x)=manfen5.com 满分网,则f(x)的定义域为( )
A.(manfen5.com 满分网,0)
B.(manfen5.com 满分网,0]
C.(manfen5.com 满分网,+∞)
D.(0,+∞)
设集合 M={x|x2+x-6<0},N={x|1≤x≤3},则M∩N=( )
A.[1,2)
B.[1,2]
C.(2,3]
D.[2,3]
已知f(x)=x2+4x+3,求f(x)在区间[t,t+1]上的最小值g(t)和最大值h(t).
已知定义在(-1,1)上的奇函数f(x),在定义域上为减函数,且f(1-a)+f(1-2a)>0,求实数a的取值范围.
已知扇形的周长为20cm,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?
求函数y=manfen5.com 满分网在区间[2,6]上的最大值和最小值.
某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?
(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
Copyright @ 2014 满分5 满分网 ManFen5.COM. All Rights Reserved.