相关试题
当前位置:首页 > 高中数学试题
已知△ABC中,∠A,∠B,∠C的对边分别为a,b,c.若a=c=manfen5.com 满分网+manfen5.com 满分网,且∠A=75°,则b=( )
A.2
B.4+2manfen5.com 满分网
C.4-2manfen5.com 满分网
D.manfen5.com 满分网-manfen5.com 满分网
已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=( )
A.-manfen5.com 满分网
B.-manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=( )
A.-3
B.-1
C.1
D.3
已知函数f(x)=x2+alnx.
(1)当a=-2时,求函数f(x)的单调区间和极值;
(2)若manfen5.com 满分网在[1,+∞)上是单调函数,求实数a的取值范围.
已知{an}为等差数列,且a1+a3=8,a2+a4=12.
(Ⅰ)求{an}的通项公式
(Ⅱ)记{an}的前n项和为Sn,若a1,ak,Sk+2成等比数列,求正整数k的值.
若向量manfen5.com 满分网,在函数manfen5.com 满分网的图象中,对称中心到对称轴的最小距离为manfen5.com 满分网,且当manfen5.com 满分网的最大值为1.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)的单调递增区间.
某商店预备在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x台(x是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费.
(1)求该月需用去的运费和保管费的总费用f(x);
(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.
设数列{an}的前n项和为Sn,且Sn=2an-3(n=1,2,…).
(Ⅰ)证明:数列{an}是等比数列;
(Ⅱ)若数列{bn}满足bn=an+2n(n=1,2,…),求数列{bn}的前n项和为Tn
已知函数f(x)=cos2x+sinxcosx(x∈R)
(I)求f(manfen5.com 满分网)的值;
(Ⅱ)求f(x)的单调递增区间.
共1028964条记录 当前(63129/102897) 首页 上一页 63124 63125 63126 63127 63128 63129 63130 63131 63132 63133 63134 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.