设奇函数f(x)在[-1,1]上是增函数,f(-1)=-1.若函数f(x)≤t2-2at+1对所有的x∈[-1,1]都成立,则当a∈[-1,1]时,t的取值范围是 . | |
设有最大值,则不等式的解集为 . | |
已知的最小值为-18,则常数k= . | |
已知⊥,||=2,||=3,且3+2与λ-垂直,则实数λ的值为 . | |
已知α的终边经过点(3a-9,a+2),且sinα>0,cosα<0,则a的取值范围是 . | |
已知函数f(x)=3x-2,x∈R.规定:给定一个实数x,赋值x1=f(x1),若x1≤244,则继续赋值,x2=f(x2),…,以此类推,若xn-1≤244,则xn=f(xn-1),否则停止赋值,如果得到xn称为赋值了n次(n∈N*).已知赋值k次后该过程停止,则x的取值范围是( ) A.(3k-6,3k-5] B.(3k-6+1,3k-5+1] C.(35-k+1,36-k+1] D.(34-k+1,35-k+1] |
|
设函数y=f(x)在(-∞,+∞)内有定义.对于给定的正数K,定义函数取函数f(x)=3-x-e-x.若对任意的x∈(-∞,+∞),恒有fK(x)=f(x),则( ) A.K的最大值为2 B.K的最小值为2 C.K的最大值为1 D.K的最小值为1 |
|
设a=(a1,a2),b=(b1,b2),定义一种向量积:a⊗b=(a1,b1)⊗(b1,b2)=(a1b1,a2b2).已知m=,n=,点P(x,y)在y=sin x的图象上运动,点Q在y=f(x)的图象上运动,且满足(x,f(x))=m⊗n(其中O为坐标原点),则y=f(x)的最大值A及最小正周期T分别( ) A.2,π B.2,4π C.,4π D.,π |
|
已知偶函数f(x)周期为2,且当x∈[0,1]时,f(x)=2x,如果在区间[-1,3]内,函数F(x)=f(x)-kx-k-2(k∈R且k≠-2)有4个不同的零点,则k的取值范围是( ) A. B.(-1,0) C. D. |
|
某展览会一周(七天)内要接待三所学校学生参观.每天只安排一所学校,其中甲学校要连续参观两天,乙、丙两学校均参观一天且参观安排在甲学校参观之后,则不同的安排方法的种类( ) A.40 B.50 C.60 D.120 |
|