已知函数(a∈R且a≠0). (Ⅰ)求函数f(x)的单调区间; (Ⅱ) 记函数y=F(x)的图象为曲线C.设点A(x1,y1),B(x2,y2)是曲线C上的不同两点,如果在曲线C上存在点M(x,y),使得:①;②曲线C在M处的切线平行于直线AB,则称函数F(x)存在“中值相依切线”. 试问:函数f(x)是否存在“中值相依切线”,请说明理由. |
|
设函数f(x)=(1+x)2-2ln(1+x). (1)若在定义域内存在x,而使得不等式f(x)-m≤0能成立,求实数m的最小值; (2)若函数g(x)=f(x)-x2-x-a在区间(0,2]上恰有两个不同的零点,求实数a的取值范围. |
|
在△ABC中,角A,B,C的对边分别为a,b,c,且. (Ⅰ)求的值; (Ⅱ)若,求△ABC面积的最大值. |
|
已知函数f(x)=ln(x+2)-x2+bx+c (Ⅰ)若函数f(x)在点x=1处的切线与直线3x+7y+2=0垂直,且f(-1)=0,求函数f(x)在区间[0,3]上的最小值; (Ⅱ)若f(x)在区间[0,1]上为单调减函数,求b的取值范围. |
|
已知向量=(sinx,cosx),=(cosx,-2cosx),-. (Ⅰ)若∥,求x; (Ⅱ)设f(x)=•,求f(x)的单调减区间; (Ⅲ)函数f(x)经过平移后所得的图象对应的函数是否能成为奇函数?如果是,说出平移方案;如果否,说明理由. |
|
已知函数f(x)=2sin(x-),x∈R (1)求f()的值; (2)设α,β∈[0,],f(3α+)=,f(3β+2π)=,求cos(α+β)的值. |
|
设函数f(x)=xα+1(α∈Q)的定义域为[-b,-a]∪[a,b],其中0<a<b.若函数f(x)在区间[a,b]上的最大值为6,最小值为3,则f(x)在区间[-b,-a]上的最大值与最小值的和为 . | |
已知函数f(x)=,若方程f(x)=a有解,则实数a的取值范围是 . | |
在△ABC中,已知,(k∈R),则= ;若∠B=90°,则k= . | |
在△ABC中,∠A=,BC=3,AB=,则∠C= ;sinB= . | |