函数f(x)=Asin(ωx+φ)(其中)的图象如图所示,为了得到g(x)=sin2x的图象,则只需将f(x)的图象( ) A.向右平移个长度单位 B.向右平移个长度单位 C.向左平移个长度单位 D.向左平移个长度单位 |
|
设p:16-x2<0,q:x2+x-6>0,则¬q是¬p的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 |
|
设F1和F2为双曲线-=1(a>0,b>0)的两个焦点,若F1,F2,P(0,2b)是正三角形的三个顶点,则双曲线的离心率为( ) A. B.2 C. D.3 |
|
把边长为1的正方形ABCD沿对角线BD折起,使得平面ABD⊥平面CBD,形成三棱锥C-ABD的正视图与俯视图如图所示,则左视图的面积为( ) A. B. C. D. |
|
已知i是虚数单位,则=( ) A.-2i B.2i C.-i D.i |
|
已知向量=( 2,4 ),=(a,3 ),若,则a的值为( ) A.6 B.-6 C. D. |
|
已知集合M={y|y=2x,x>0},N={x|y=lg(2x-x2)},则M∩N为( ) A.(1,2) B.(1,+∞) C.[2,+∞) D.[1,+∞) |
|
已知a∈R,函数f (x)=-x3+ax2+2ax (x∈R). (Ⅰ)当a=1时,求函数f (x)的单调递增区间; (Ⅱ)函数f (x)能否在R上单调递减,若是,求出a的取值范围;若不能,请说明理由; (Ⅲ)若函数f (x)在[-1,1]上单调递增,求a的取值范围. |
|
某鱼塘2009年初有鱼10(万条),每年年终将捕捞当年鱼总量的50%,在第二年年初又将有一部分新鱼放入鱼塘.根据养鱼的科学技术知识,该鱼塘中鱼的总量不能超过19.5(万条)(不考虑鱼的自然繁殖和死亡等因素对鱼总量的影响),所以该鱼塘采取对放入鱼塘的新鱼数进行控制,该鱼塘每年只放入新鱼b(万条). (I)设第n年年初该鱼塘的鱼总量为an(年初已放入新鱼b(万条),2010年为第一年),求a1及an+1与an间的关系; (Ⅱ)当b=10时,试问能否有效控制鱼塘总量不超过19.5(万条)?若有效,说明理由;若无效,请指出哪一年初开始鱼塘中鱼的总量超过19.5(万条). |
|
函数f(x)=是定义在(-1,1)的奇函数,且f()=. (1)确定f(x)的解析式; (2)判断函数在(-1,1)上的单调性; (3)解不等式f(t-1)+f(t)<0. |
|