相关试题
当前位置:首页 > 高中数学试题
函数manfen5.com 满分网的零点有( )
A.0个
B.1个
C.2个
D.3个
已知集合A={-1,1},B={x∈R|x2-x-2=0},则A∩B=( )
A.{-1}
B.{1}
C.{-1,1}
D.∅
已知函数f(x)=kx2+(k-1)x(k为常数)
(1)若k=2,解不等式f(x)>0;
(2)若k>0,解不等式f(x)>0;
(3)若k>0,且对于任意x∈[1,+∞),总有g(x)=manfen5.com 满分网≥1成立,求k的取值范围.
已知{an}为递增的等比数列,且{a1,a3,a5}⊂{-10,-6,-2,0,1,3,4,16}.
(I)求数列{an}的通项公式;
(II)是否存在等差数列{bn},使得a1bn+a2bn-1+a3bn-2+…+anb1=2n+1-n-2对一切n∈N*都成立?若存在,求出bn;若不存在,说明理由.
已知函数f(x)=kx+m,数列{an},{bn}满足:当x∈[a1,b1]时,f(x)的值域是[a2,b2];当x∈[a2,b2]时,f(x)的值域是[a3,b3],…,当x∈[an-1,bn-1](n∈N,且n≥2)时,f(x)的值域是{an,bn},其中k,m为常数,a1=0,b1=1.
(1)若k=1,m=2,求a2,b2以及数列{an}与{bn}的通项;
(2)若k=2,且数列{bn}是等比数列,求m的值;
(3)(附加题:5分,记入总分,但总分不超过150分)若k>0,设{an}与{bn}的前n项和分别为Sn和Tn,求-.
已知数列{an}的前n项和Sn=2-an
(1)求数列{an}的通项公式;
(2)求数列{Sn}的前项和.
如图,某住宅小区的平面图呈扇形AOC.小区的两个出入口设置在点A及点C处,小区里有两条笔直的小路AD,CD,且拐弯处的转角为120°.已知某人从C沿CD走到D用了10分钟,从D沿DA走到A用了6分钟.若此人步行的速度为每分钟50米,求该扇形的半径OA的长(精确到1米).

manfen5.com 满分网
已知f(x)=cosx-cos(x+manfen5.com 满分网).
(1)求函数f(x)在区间,[manfen5.com 满分网manfen5.com 满分网]上的最小值和最大值;
(2)在△ABC中,a,b,c分别是角A,B,C所对的边,且f(A)=1,△ABC的面积为S=6manfen5.com 满分网,b=4,求a的值.
五位同学围成一圈依次循环报数,规定①第一位同学首次报出的数为1,第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同学报出的数之和,②若报出的数为3的倍数,则报该数的同学需拍手1次.已知甲同学第一个报数.当五位同学依次循环报到第100个数时,甲同学拍手的总次数为   
已知数列{an}满足a1=33,an+1-an=2n,则an=    manfen5.com 满分网的最小值为   
共1028964条记录 当前(65971/102897) 首页 上一页 65966 65967 65968 65969 65970 65971 65972 65973 65974 65975 65976 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.