设定点M(3,)与抛物线y2=2x上的点P的距离为d1,P到抛物线准线l的距离为d2,则d1+d2取最小值时,P点的坐标为( ) A.(0,0) B.(1,) C.(2,2) D.() |
|
当x在(-∞,+∞)上变化时,导函数f′(x)的符号变化如下表:
A. B. C. D. |
|||||||||||||
如果双曲线的两个焦点分别为F1(-3,0)、F2(3,0),一条渐近线方程为,那么它的两条准线间的距离是( ) A. B.4 C.2 D.1 |
|
函数y=ax2+1的图象与直线y=x相切,则a=( ) A. B. C. D.1 |
|
已知两个平面垂直,下列命题 ①一个平面内的已知直线必垂直于另一个平面的任意一条直线; ②一个平面内的已知直线必垂直于另一个平面的无数条直线; ③一个平面内的任一条直线必垂直于另一个平面; ④过一个平面内任意一点作交线的垂线,则垂线必垂直于另一个平面, 其中正确的是( ) A.①③ B.②④ C.①② D.③④ |
|
下列有关命题的说法正确的是( ) A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1” B.命题“∃x∈R,x2+x+2<0”的否定是“∀x∈R,x2+x+2≥0” C.命题“若x=y,则x2=y2”的逆否命题是假命题 D.已知m、n∈N,命题“若m+n是奇数,则m、n这两个数中一个为奇数,另一个为偶数”的逆命题为假命题 |
|
如图,已知正三棱柱ABC-A1B1C1的各条棱长都为a,P为A1B上的点. (1)试确定的值,使得PC⊥AB; (2)若,求二面角P-AC-B的大小; (3)在(2)的条件下,求C1到平面PAC的距离. |
|
已知点F(0,1),直线l:y=-1,P为平面上的动点,过点P作直线l的垂线,垂足为Q,且. (1)求动点P的轨迹C的方程; (2)已知圆M过定点D(0,2),圆心M在轨迹C上运动,且圆M与x轴交于A、B两点,设|DA|=l1,|DB|=l2,求的最大值. |
|
投掷一个质地均匀的、每个面上标有一个数字的正方体玩具,它的六个面中,有两个面标的数字是0,两个面标的数字是2,两个面标的数字是4,将此玩具连续抛掷两次,以两次朝上一面出现的数字分别作为点P的横坐标和纵坐标 (1)求点P落在区域C:x2+y2≤10内的概率; (2)若以落在区域C上的所有点为顶点作面积最大的多边形区域M,在区域C上随机撒一粒豆子,求豆子落在区域M上的概率. |
|
如图,在三棱柱ABC-A1B1C1中,已知BC=1,BB1=2,∠BCC1=90°,AB⊥侧面BB1CC1. (1)求直线C1B与底面ABC所成角的正弦值; (2)在棱CC1(不包含端点C,C1)上确定一点E的位置,使得EA⊥EB1(要求说明理由). (3)在(2)的条件下,若AB=,求二面角A-EB1-A1的大小. |
|