已知a,b是实数,则“a>0且b>0”是“a+b>0且ab>0”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 |
|
已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩∁NB=( ) A.{1,5,7} B.{3,5,7} C.{1,3,9} D.{1,2,3} |
|
已知函数f(x)=x3+ax2+x+2. (Ⅰ)若a=-1,令函数g(x)=2x-f(x),求函数g(x)在(-1,2)上的极大值、极小值; (Ⅱ)若函数f(x)在上恒为单调递增函数,求实数a的取值范围. |
|
某商店预备在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x台(x是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费. (1)求该月需用去的运费和保管费的总费用f(x); (2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由. |
|
已知向量=(cosα,sinα),=(cosβ,sinβ),|-|=. (1)求cos(α-β)的值; (2)若0<α<,-<β<0,且sinβ=-,求sinα的值. |
|
已知函数 (1)讨论函数f(x)的奇偶性,并说明理由; (2)若函数f(x)在x∈[3,+∞)上为增函数,求a的取值范围. |
|
如图,点A,B是单位圆上的两点,A,B点分别在第一、二象限,点C是圆与x轴正半轴的交点,△AOB是正三角形,若点A的坐标为(,),记∠COA=α. (1)求的值; (2)求|BC|2的值. |
|
已知函数f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f(y),f(3)=1 (1)求f(9),f(27)的值 (2)解不等式f(x)+f(x-8)<2. |
|
在下列四个结论中,正确的有 .(填序号) ①若A是B的必要不充分条件,则非B也是非A的必要不充分条件 ②“”是“一元二次不等式ax2+bx+c≥0的解集为R”的充要条件 ③“x≠1”是“x2≠1”的充分不必要条件 ④“x≠0”是“x+|x|>0”的必要不充分条件 |
|
若的最大值是3,则a的值是 . | |