已知,则等于( ) A. B.7 C. D.-7 |
|
下列四个函数中,在区间(0,1)上为减函数的是( ) A.y=log2 B. C. D. |
|
已知a,b是实数,则“a>0且b>0”是“a+b>0且ab>0”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 |
|
已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩∁NB=( ) A.{1,5,7} B.{3,5,7} C.{1,3,9} D.{1,2,3} |
|
定义F(x,y)=(1+x)y,其中x,y∈(0,+∞). (1)令函数f(x)=F(1,log2(x3+ax2+bx+1)),其图象为曲线C,若存在实数b使得曲线C在x(-4<x<-1)处有斜率为-8的切线,求实数a的取值范围; (2)令函数g(x)=F(1,log2[(lnx-1)ex+x]),是否存在实数x∈[1,e],使曲线y=g(x)在点x=x处的切线与y轴垂直?若存在,求出x的值;若不存在,请说明理由. (3)当x,y∈N,且x<y时,求证:F(x,y)>F(y,x). |
|
设函数y=f(x)的定义域为(0,+∞),且在(0,+∞)上单调递增,若对任意x,y∈(0,+∞)都有:f(xy)=f(x)+f(y)成立,数列{an}满足:a1=f(1)+1,f()+f(+)=0.设Sn=+++…++. (1)求数列{an}的通项公式,并求Sn关于n的表达式; (2)设函数g(x)对任意x、y都有:g(x+y)=g(x)+g(y)+2xy,若g(1)=1,正项数列{bn}满足:=g(),Tn为数列{bn}的前n项和,试比较4Sn与Tn的大小. |
|
某化工厂生产某种产品,每件产品的生产成本是3元,根据市场调查,预计每件产品的出厂价为x元(7≤x≤10)时,一年的产量为(11-x)2万件.但为了保护环境,用于污染治理的费用与产量成正比,比例系数为常数a(1≤a≤3).若该企业所生产的产品全部销售. (1)求该企业一年的利润L(x)与出厂价x的函数关系式; (2)当每件产品的出厂价定为多少元时,企业一年的利润最大,并求最大利润. |
|
已知数列{an}的前三项与数列{bn}的前三项对应相等,且a1+2a2+22a3+…+2n-1an=8n对任意的n∈N*都成立,数列{bn+1-bn}是等差数列. (1)求数列{an}与{bn}的通项公式; (2)是否存在k∈N*,使得bk-ak∈(0,1)?请说明理由. |
|
已知函数f(x)=2sinωx•cos(ωx+)+(ω>0)的最小正周期为4π(1)求正实数ω的值;(2)在△ABC中,内角A、B、C的对边分别为a、b、c,且满足2bcosA=acosC+ccosA,求f(A)的值. |
|
若盒中装有同一型号的灯泡共12只,其中有9只合格品,3只次品. (1)某工人师傅有放回地连续从该盒中取灯泡3次,每次取一只灯泡,求2次取到次品的概率; (2)某工人师傅用该盒中的灯泡去更换会议室的一只已坏灯泡,每次从中取一灯泡,若是正品则用它更换已坏灯泡,若是次品则将其报废(不再放回原盒中),求成功更换会议室的已坏灯泡前取出的次品灯泡只数X的分布列和数学期望. |
|