在坐标平面内,与点A(1,2)距离为1,且与点B(-3,1)距离为2的直线共有( ) A.4条 B.3条 C.2条 D.1条 |
|
与圆C:x2+(y+5)2=3相切、且纵截距和横截距相等的直线共有( ) A.2条 B.3条 C.4条 D.6条 |
|
已知圆的方程为x2+y2-6x-8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为( ) A.10 B.20 C.30 D.40 |
|
曲线y=|x|和圆x2+y2=4所围成的较小区域的面积为( ) A. B. C.π D. |
|
某化妆品生产企业为了占有更多的市场份额,拟在2010年世博会期间进行一系列促销活动,经过市场调查和测算,化妆品的年销量x万件与年促销费t万元之间满足3-x与t+1成反比例,如果不搞促销活动,化妆品的年销量只能是1万件,已知2010年生产化妆品的设备折旧、维修等固定费用为3万元,每生产1万件化妆品需要再投入32万元的生产费用,若将每件化妆品的售价定为:其生产成本的150%与平均每件促销费的一半之和,则当年生产的化妆品正好能销完. (1)将2010年利润y(万元)表示为促销费t(万元)的函数; (2)该企业2010年的促销费投入多少万元时,企业的年利润最大? (注:利润=销售收入-生产成本-促销费,生产成本=固定费用+生产费用) |
|
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC. (1)求角C的大小; (2)求sinA-cos(B+)的最大值,并求取得最大值时角A、B的大小. |
|
已知,p={x|x2-8x-20≤0},S={x||x-1|≤m} (1)若p∪S⊆p,求实数m的取值范围; (2)是否存在实数m,使“x∈p”是“x∈S”的充要条件,若存在,求出m的取值范围;若不存在,请说明理由. |
|
已知函数. (Ⅰ)若,求f(x)的最大值及取得最大值时相应的x的值; (Ⅱ)在△ABC中,a、b、c分别为角A、B、C的对边,若,b=l,c=4,求a的值. |
|
已知函数f(x)=sin(ωx+ϕ)(ω>0,0≤ϕ≤π)为偶函数,其图象上相邻的两个最高点之间的距离为2π. (Ⅰ)求f(x)的解析式; (Ⅱ)若,求的值. |
|
已知向量=(,),=(cosx,sinx),x∈(0,). (1)若∥,求sinx和cos2x的值; (2)若=2cos(+x)(k∈Z),求tan(x+)的值. |
|