已知等差数列{an}的前13项之和为39,则a6+a7+a8等于( ) A.6 B.9 C.12 D.18 |
|
复数的共轭复数为( ) A.-i B.- C.1-2i D.1+2i |
|
已知全集U=R,集合A={x|x+1<0},B={x|x-3<0},那么集合(CUA)∩B=( ) A.{x|-1≤x<3} B.{x|-1<x<3} C.{x|x<-1} D.{x|x>3} |
|
已知函数f(x)=ax2+x-3,g(x)=-x+4lnx,h(x)=f(x)-g(x) (1)当a=1时,求函数h(x)的极值; (2)若函数h(x)有两个极值点,求实数a的取值范围; (3)定义:对于函数F(x)和G(x),若存在直线ℓ:y=kx+b,使得对于函数F(x)和G(x)各自定义域内的任意x,都有F(x)≥kx+b且G(x)≤kx+b成立,则称直线ℓ:y=kx+b为函数F(x)和G(x)的“隔离直线”.则当a=1时,函数f(x)和g(x)是否存在“隔离直线”.若存在,求出所有的“隔离直线”;若不存在,请说明理由. |
|
已知函数. (1)求f(x)的值域; (2)设a≠0,函数,x∈[0,2].若对任意x1∈[0,2],总存在x2∈[0,2],使f(x1)-g(x2)=0.求实数a的取值范围. |
|
已知a是实数,函数 (Ⅰ)求函数f(x)的单调区间; (Ⅱ)设g(a)为f(x)在区间[0,2]上的最小值. (i)写出g(a)的表达式; (ii)求a的取值范围,使得-6≤g(a)≤-2. |
|
某市旅游部门开发一种旅游纪念品,每件产品的成本是15元,销售价是20元,月平均销售a件,通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为x(0<x<1),那么月平均销售量减少的百分率为x2.记改进工艺后,旅游部门销售该纪念品的月平均利润是y(元). (Ⅰ)写出y与x的函数关系式; (Ⅱ)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大. |
|
函数f(x)=ax3+bx2的图象过点M(1,4),在点M处的切线恰与直线x+9y+5=0垂直. (1)求a,b的值; (2)若f(x)在区间(m-1,m+1)上单调递增,求m的取值范围. |
|
二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1. (1)求f(x)的解析式; (2)在区间[-1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,试确定实数m的范围. |
|
函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=2x+1(x∈R)是单函数.下列命题: ①函数f(x)=x2(x∈R)是单函数; ②若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2); ③若f:A→B为单函数,则对于任意b∈B,它至多有一个原象; ④函数f(x)在某区间上具有单调性,则f(x)一定是单函数. 其中的真命题是 .(写出所有真命题的编号) |
|