设m、n是两条不同的直线,α、β是两个不同的平面.考查下列命题,其中正确的命题是( ) A.m⊥α,n⊂β,m⊥n⇒α⊥β B.α∥β,m⊥α,n∥β⇒m⊥n C.α⊥β,m⊥α,n∥β⇒m⊥n D.α⊥β,α∩β=m,n⊥m⇒n⊥β |
|
设直角△ABC的三边分别为a,b,c,其中c为斜边,直线ax+by+c=0与圆cos2θ•x2+cos2θ•y2=1,θ为常数,θ∈(0,)交于M、N两点,则|MN|=( ) A.sinθ B.2sinθ C.tanθ D.2tanθ |
|
设偶函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,△KLM为等腰直角三角形,∠KML=90°,KL=1,则f()的值为( ) A.- B.- C. D. |
|
若某多面体的三视图(单位:cm) 如图所示,则此多面体的体积是( ) A.2cm3 B.cm3 C.1cm3 D.cm3 |
|
已知等差数列{an}的公差为2,若a1,a3,a4成等比数列,则a6=( ) A.-8 B.0 C.2 D.8 |
|
设,是单位向量,则“•=1”是“=”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 |
|
已知全集U=R,集合A={x|x2-2x>0},B={x|y=lg(x-1)},则(CuA)∩B等于( ) A.{x|x>2或x<0} B.{x|1<x<2} C.{x|1≤x≤2} D.{x|1<x≤2} |
|
已知函数f(x)=ax2+bx+1(a,b为实数,a≠0,x∈R). (Ⅰ)当函数f(x)的图象过点(-1,0),且方程f(x)=0有且只有一个根,求f(x)的表达式; (Ⅱ)在(Ⅰ)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围; (Ⅲ)若当mn<0,m+n>0,a>0,且函数f(x)为偶函数时,试判断F(m)+F(n)能否大于0? |
|
某广场一雕塑造型结构如图所示,最上层是一呈水平状态的圆环,其半径为2m,通过金属杆BC,CA1,CA2,CA3支撑在地面B处(BC垂直于水平面),A1,A2,A3是圆环上的三等分点,圆环所在的水平面距地面10m,设金属杆CA1,CA2,CA3所在直线与圆环所在水平面所成的角都为θ.(圆环及金属杆均不计粗细) (1)当θ的正弦值为多少时,金属杆BC,CA1,CA2,CA3的总长最短? (2)为美观与安全,在圆环上设置A1,A2,…,An(n≥4)个等分点,并仍按上面方法连接,若还要求金属杆BC,CA1,CA2,…,CAn的总长最短,对比(1)中C点位置,此时C点将会上移还是下移,请说明理由. |
|
在△ABC中,内角A,B,C所对的边分别是a,b,c,已知a=2,A=. (I 若||=2,试判定△ABC的形状; (II)若sinA+sin(B-C)=2sin2C,求△ABC的面积. |
|