设复数z=1+i,则复数+z2的共轭复数为( ) A.1-i B.1+i C.-1+i D.-1-i |
|
已知函数f(x)的导函数f′(x)=ax2+bx+c的图象如图,则f(x)的图象可能是( ) A. B. C. D. |
|
已知函数f(x)=-cosx+lnx,则f'(1)的值为( ) A.sin1-1 B.1-sin1 C.1+sin1 D.-1-sin1 |
|
复数的虚部是( ) A.2i B. C. D. |
|
已知函数,则=( ) A.4 B. C.-4 D.- |
|
复数等于( ) A.-1 B.1 C.i D.-i |
|
椭圆C:+=1(a>b>0)的两个焦点为F1、F2,短轴两端点B1、B2,已知F1、F2、B1、B2四点共圆,且点N(0,3)到椭圆上的点最远距离为5. (1)求此时椭圆C的方程; (2)设斜率为k(k≠0)的直线m与椭圆C相交于不同的两点E、F,Q为EF的中点,问E、F两点能否关于过点P(0,)、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由. |
|
已知双曲线的左、右顶点分别为A1,A2,点P(x1,y1),Q(x1,-y1)是双曲线上不同的两个动点. (1)求直线A1P与A2Q交点的轨迹E的方程; (2)若过点H(0,h)(h>1)的两条直线l1和l2与轨迹E都只有一个交点,且l1⊥l2,求h的值. |
|
已知椭圆C的左、右焦点坐标分别是,,离心率是,直线y=t椭圆C交与不同的两点M,N,以线段为直径作圆P,圆心为P. (Ⅰ)求椭圆C的方程; (Ⅱ)若圆P与x轴相切,求圆心P的坐标; (Ⅲ)设Q(x,y)是圆P上的动点,当T变化时,求y的最大值. |
|
已知双曲线,过B(1,1)能否作直线l,使l与双曲线交于P,Q两点,且B是线段PQ的中点,这样的直线如果存在,求出它的方程;如果不存在,说明理由. |
|