已知向量且,则数列{an}的前n项和为Sn=( ) A.2n+1-2 B.2-2n+1 C.2n-1 D.3n-1 |
|
已知y=f-1(x)是函数的反函数,则f-1(0)的值是( ) A.0 B. C. D.1 |
|
已知向量,若,则θ=( ) A. B. C.或 D.或 |
|
在△ABC中,a、b分别是角A、B所对的边,条件“a<b”是使“cosA>cosB”成立的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 |
|
不等式的解集是( ) A.{x|x>0} B.. C..{x|x>0或 D..{x|x<0或 |
|
设全集U=R,A={x|2x(x-2)<1},B={x|y=ln(1-x)},则图中阴影部分表示的集合为( ) A.{x|x≥1} B.{x|0<x≤1} C.{x|1≤x<2} D.{x|x≤1} |
|
tan600°的值为( ) A. B. C. D. |
|
已知数列{an}的各项均是正数,其前n项和为Sn,满足(p-1)Sn=p2-an,其中p为正常数,且p≠1. (1)求数列{an}的通项公式; (2)设bn=的取值范围; (3)是否存在正整数M,使得n>M时,a1a4a7…a3n-2>a78恒成立?若存在,求出相应的M的最小值;若不存在,请说明理由. |
|
提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数. (I)当0≤x≤200时,求函数v(x)的表达式; (Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时). |
|
成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{bn}中的b3、b4、b5. (I) 求数列{bn}的通项公式; (II) 数列{bn}的前n项和为Sn,求证:数列{Sn+}是等比数列. |
|