已知方程(x-a)(x-b)+1=0(a<b)有两实根α,β(α<β),则( ) A.α<a<b<β B.a<α<β<b C.α<a<b<β D.α<a<β<b |
|
若函数y=ax+b-1(a>0且a≠1)的图象经过第二、三、四象限,则一定有( ) A.0<a<1,且b>0 B.a>1,且b>0 C.0<a<1,且b<0 D.a>1,且b<0 |
|
已知命题p:>0;命题q:有意义,则¬p是¬q的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.不充分不必要条件 |
|
已知:函数f(x)对一切实数x,y都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0. (1)求f(0)的值. (2)求f(x)的解析式. (3)已知a∈R,设P:当时,不等式f(x)+3<2x+a恒成立;Q:当x∈[-2,2]时,g(x)=f(x)-ax是单调函数.如果满足P成立的a的集合记为A,满足Q成立的a的集合记为B,求A∩CRB(R为全集). |
|
设a为实数,函数f(x)=x2+|x-a|+1,x∈R (1)讨论f(x)的奇偶性; (2)求f(x)的最小值. |
|
已知函数f(x)=x2+ax,且对任意的实数x都有f(1+x)=f(1-x)成立. (1)求实数a的值; (2)利用单调性的定义证明函数f(x)在区间[1,+∞)上是增函数. |
|
已知定义在区间(-1,1)上的偶函数f(x),在(0,1)上为增函数,f(a-2)-f(4-a2)<0,求实数a的取值范围. |
|
设函数f(x)=ax+b的图象经过点(1,7),又其反函数的图象经过点(4,0),求函数的解析式,并求f(-2)、f()的值. |
|
已知集合A={x|x2-3x+2≤0},B={y|y=x2-2x+a},且A⊂B,求a的取值范围. |
|
已知f(x)是R上的增函数,A(0,-1),B(3,1)是其图象上的两个点,那么|f(x+1)|<1的解集是 . | |