相关试题
当前位置:首页 > 高中数学试题
已知直线l的方程为x=-2,且直线l与x轴交于点M,圆O:x2+y2=1与x轴交于A,B两点.
(1)过M点的直线l1交圆于P、Q两点,且圆孤PQ恰为圆周的manfen5.com 满分网,求直线l1的方程;
(2)求以l为准线,中心在原点,且与圆O恰有两个公共点的椭圆方程;
(3)过M点作直线l2与圆相切于点N,设(2)中椭圆的两个焦点分别为F1,F2,求三角形△NF1F2面积.

manfen5.com 满分网
已知函数manfen5.com 满分网,常数a>0.
(1)设m•n>0,证明:函数f(x)在[m,n]上单调递增;
(2)设0<m<n且f(x)的定义域和值域都是[m,n],求常数a的取值范围.
如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).
(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;
(2)按照给出的尺寸,求该多面体的体积;
(3)在所给直观图中连接BC′,证明:BC′∥面EFG.
manfen5.com 满分网
已知向量a=(sin(manfen5.com 满分网+x),manfen5.com 满分网cosx),b=(sinx,cosx),f(x)=a•b.
(1)求f(x)的最小正周期和单调增区间;
(2)如果三角形ABC中,满足f(A)=manfen5.com 满分网,求角A的值.
三位同学合作学习,对问题“已知不等式xy≤ax2+2y2对于x∈[1,2],y∈[2,3]恒成立,求a的取值范围”提出了各自的解题思路.
甲说:“可视x为变量,y为常量来分析”.
乙说:“不等式两边同除以x2,再作分析”.
丙说:“把字母a单独放在一边,再作分析”.
参考上述思路,或自已的其它解法,可求出实数a的取值范围是   
对于函数f(x),在使f(x)≥M恒成立的所有常数M中,我们把M中的最大值称为函数f(x)的“下确界”,则函数manfen5.com 满分网的下确界为   
在一个密封的容积为1的透明正方体容器内装有部分液体,如果任意转动该正方体,液面的形状都不可能是三角形,那么液体体积的取值范围是   
已知点O为△ABC的外心,且manfen5.com 满分网,则manfen5.com 满分网=   
manfen5.com 满分网将正奇数排列如下表其中第i行第j个数表示aij(i∈N*,j∈N*),例如a32=9,若aij=2009,则i+j=   
将一枚骰子抛掷两次,若先后出现的点数分别为b,c,则方程x2+bx+c=0有实根的概率为    
共1028964条记录 当前(70653/102897) 首页 上一页 70648 70649 70650 70651 70652 70653 70654 70655 70656 70657 70658 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.