设函数,其中向量,,,x∈R. (Ⅰ)求函数f(x)的最大值和最小正周期; (Ⅱ)将函数f(x)的图象按向量平移,使平移后得到的图象关于坐标原点成中心对称,求长度最小的. |
|
已知定义域为R的函数是奇函数. (Ⅰ)求a,b的值; (Ⅱ)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围. |
|
已知函数f(x)=ax3+bx2+cx在点x处取得极大值5,其导函数y=f′(x)的图象经过点(1,0),(2,0),如图所示,求: (Ⅰ)x的值; (Ⅱ)a,b,c的值. |
|
甲、乙、丙3人投篮,投进的概率分别是,,. (Ⅰ)现3人各投篮1次,求3人都没有投进的概率; (Ⅱ)用ξ表示乙投篮3次的进球数,求随机变量ξ的概率分布及数学期望Eξ. |
|
已知α为锐角,且. (1)求的值; (2)求的值. |
|
函数f(x)对于任意实数x满足条件f(x+2)=,若f(1)=-5,则f[f(5)]= . | |
设向量与的夹角为θ,且,,则cosθ= . | |
某高校有甲、乙两个数学建模兴趣班.其中甲班有40人,乙班50人.现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是 分. | |
的值等于 . | |
如果函数y=ax(ax-3a2-1)(a>0且a≠1)在区间[0,+∞)上是增函数,那么实数a的取值范围是( ) A. B. C. D. |
|