已知向量,,则的最大值为( ) A.1 B. C.3 D.9 |
|
已知i是虚数单位,则复数的虚部等于( ) A.-1 B.-i C.i D.1 |
|
已知集合M={x||x-1|<1},N={y|y=log2(x2+2x+3)}则M∩N=( ) A.{x||1≤x<2} B.{x||0<x<2} C.{x||1<x<2} D.φ |
|
设minA表示数集A中的最小数;设maxA表示数集A中的最大数. (1)若a,b>0,,求证:; (2)若,,,求H的最小值. |
|
选修4-4:坐标系与参数方程 已知圆锥曲线C:(θ为参数)和定点,F1,F2是此圆锥曲线的左、右焦点. (1)以原点O为极点,以x轴的正半轴为极轴建立极坐标系,求直线AF2的极坐标方程; (2)经过点F1,且与直线AF2垂直的直线l交此圆锥曲线于M、N两点,求||MF1|-|NF1||的值. |
|
如图,已知△ABC中的两条角平分线AD和CE相交于H,∠B=60°,F在AC上, 且AE=AF. (1)证明:B,D,H,E四点共圆; (2)证明:CE平分∠DEF. |
|
设函数f(x)=x2,g(x)=alnx+bx(a>0). (Ⅰ)若f(1)=g(1),f'(1)=g'(1),求F(x)=f(x)-g(x)的极小值; (Ⅱ)在(Ⅰ)的条件下,是否存在实常数k和m,使得f(x)≥kx+m和g(x)≤kx+m?若存在,求出k和m的值.若不存在,说明理由. (Ⅲ)设G(x)=f(x)+2-g(x)有两个零点x1,x2,且x1,x,x2成等差数列,试探究G'(x)值的符号. |
|
已知椭圆C:(a>b>0)的一个焦点是(1,0),两个焦点与短轴的一个端点 构成等边三角形. (Ⅰ)求椭圆C的方程; (Ⅱ)过点Q(4,0)且不与坐标轴垂直的直线l交椭圆C于A、B两点,设点A关于x轴的对称点为A1. (ⅰ)求证:直线A1B过x轴上一定点,并求出此定点坐标; (ⅱ)求△OA1B面积的取值范围. |
|
如图,平面PAC⊥平面ABC,点E、F、O分别为线段PA、PB、AC的中点,点G是线段CO的中点,AB=BC=AC=4,PA=PC=2.求证: (1)PA⊥平面EBO; (2)FG∥平面EBO. |
|
某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段,[40,50),[50,60),…[90,100]后画出如下图的频率分布直方图,观察图形,回答下列问题: (1)求第四小组的频率,并补全这个频率分布直方图; (2)估计这次考试的合格率(60分及60分以上为合格); (3)把90分以上(包括90分)视为成绩优秀,那么从成绩是60分以上(包括60分)的学生中选一人,求此人成绩优秀的概率. |
|