相关试题
当前位置:首页 > 高中数学试题
已知f(x)=manfen5.com 满分网,当θ∈manfen5.com 满分网时,f(sin 2θ)-f(-sin 2θ)可化简为( )
A.2sin θ
B.-2cos θ
C.-2sin θ
D.2cos θ
如果α∈(manfen5.com 满分网,π),且sinα=manfen5.com 满分网,那么sin(α+manfen5.com 满分网)+cos(α+manfen5.com 满分网)=( )
A.manfen5.com 满分网
B.-manfen5.com 满分网
C.manfen5.com 满分网
D.-manfen5.com 满分网
manfen5.com 满分网如图,过抛物线C:y2=4x上一点P(1,-2)作倾斜角互补的两条直线,分别与抛物线交于点A(x1,y1),B(x2,y2
(1)求y1+y2的值;
(2)若y1≥0,y2≥0,求△PAB面积的最大值.
如图,已知面积为1的正三角形ABC三边的中点分别为D、E、F,从A,B,C,D,E,F六个点中任取三个不同的点,所构成的三角形的面积为X(三点共线时,规定X=0)
(1)求manfen5.com 满分网
(2)求E(X)

manfen5.com 满分网
选修4-4:坐标系与参数方程
已知曲线C1的参数方程为manfen5.com 满分网(其中α为参数),M是曲线C1上的动点,且M 是线段OP 的中点,(其中O点为坐标原点),P 点的轨迹为曲线C2,直线l 的方程为ρsin(θ+manfen5.com 满分网)=manfen5.com 满分网,直线l 与曲线C2交于A,B两点.
(1)求曲线C2的普通方程;
(2)求线段AB的长.
(选修4-2:矩阵与变换)
已知矩阵A=manfen5.com 满分网,若矩阵A属于特征值6的一个特征向量为α1=manfen5.com 满分网,属于特征值1的一个特征向量为α2=manfen5.com 满分网.求矩阵A,并写出A的逆矩阵.
设a>0,函数f(x)=x2+a|lnx-1|.
(1)当a=1时,求曲线y=f(x)在x=1处的切线方程;
(2)当x∈[1,+∞)时,求函数f(x)的最小值.
已知P1(x1,y1),P2(x2,y2)是函数manfen5.com 满分网图象上的两点,且manfen5.com 满分网,点P、A、B共线,且manfen5.com 满分网
(1)求P点坐标
(2)若manfen5.com 满分网,求S2011
(3)若manfen5.com 满分网,记Tn为数列manfen5.com 满分网前n项的和,若manfen5.com 满分网时,对一切n∈N*都成立,试求a的取值范围.
已知椭圆的中心为坐标原点O,椭圆短半轴长为1,动点M(2,t)(t>0)在直线manfen5.com 满分网上.
(1)求椭圆的标准方程
(2)求以OM为直径且被直线3x-4y-5=0截得的弦长为2的圆的方程;
(3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值.
某商场对A品牌的商品进行了市场调查,预计2012年从1月起前x个月顾客对A品牌的商品的需求总量P(x)件与月份x的近似关系是:P(x)=manfen5.com 满分网x(x+1)(41-2x)(x≤12且x∈N+
(1)写出第x月的需求量f(x)的表达式;
(2)若第x月的销售量g(x)=manfen5.com 满分网 (单位:件),每件利润q(x)元与月份x的近似关系为:q(x)=manfen5.com 满分网,问:该商场销售A品牌商品,预计第几月的月利润达到最大值?月利润最大值是多少?(e6≈403)
共1028964条记录 当前(76447/102897) 首页 上一页 76442 76443 76444 76445 76446 76447 76448 76449 76450 76451 76452 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.