已知f(x)=,当θ∈时,f(sin 2θ)-f(-sin 2θ)可化简为( ) A.2sin θ B.-2cos θ C.-2sin θ D.2cos θ |
|
如果α∈(,π),且sinα=,那么sin(α+)+cos(α+)=( ) A. B.- C. D.- |
|
如图,过抛物线C:y2=4x上一点P(1,-2)作倾斜角互补的两条直线,分别与抛物线交于点A(x1,y1),B(x2,y2) (1)求y1+y2的值; (2)若y1≥0,y2≥0,求△PAB面积的最大值. |
|
如图,已知面积为1的正三角形ABC三边的中点分别为D、E、F,从A,B,C,D,E,F六个点中任取三个不同的点,所构成的三角形的面积为X(三点共线时,规定X=0) (1)求; (2)求E(X) |
|
选修4-4:坐标系与参数方程 已知曲线C1的参数方程为(其中α为参数),M是曲线C1上的动点,且M 是线段OP 的中点,(其中O点为坐标原点),P 点的轨迹为曲线C2,直线l 的方程为ρsin(θ+)=,直线l 与曲线C2交于A,B两点. (1)求曲线C2的普通方程; (2)求线段AB的长. |
|
(选修4-2:矩阵与变换) 已知矩阵A=,若矩阵A属于特征值6的一个特征向量为α1=,属于特征值1的一个特征向量为α2=.求矩阵A,并写出A的逆矩阵. |
|
设a>0,函数f(x)=x2+a|lnx-1|. (1)当a=1时,求曲线y=f(x)在x=1处的切线方程; (2)当x∈[1,+∞)时,求函数f(x)的最小值. |
|
已知P1(x1,y1),P2(x2,y2)是函数图象上的两点,且,点P、A、B共线,且 (1)求P点坐标 (2)若,求S2011 (3)若,记Tn为数列前n项的和,若时,对一切n∈N*都成立,试求a的取值范围. |
|
已知椭圆的中心为坐标原点O,椭圆短半轴长为1,动点M(2,t)(t>0)在直线上. (1)求椭圆的标准方程 (2)求以OM为直径且被直线3x-4y-5=0截得的弦长为2的圆的方程; (3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值. |
|
某商场对A品牌的商品进行了市场调查,预计2012年从1月起前x个月顾客对A品牌的商品的需求总量P(x)件与月份x的近似关系是:P(x)=x(x+1)(41-2x)(x≤12且x∈N+) (1)写出第x月的需求量f(x)的表达式; (2)若第x月的销售量g(x)= (单位:件),每件利润q(x)元与月份x的近似关系为:q(x)=,问:该商场销售A品牌商品,预计第几月的月利润达到最大值?月利润最大值是多少?(e6≈403) |
|