某项竞赛分为初赛、复赛、决赛三个阶段进行,每个阶段选手要回答一个问题.规定正确回答问题者进入下一阶段竞赛,否则即遭淘汰.已知某选手通过初赛、复赛、决赛的概率分别是,,,且各阶段通过与否相互独立. (Ⅰ)求该选手在复赛阶段被淘汰的概率; (Ⅱ)设该选手在竞赛中回答问题的个数为ξ,求ξ的数学期望和方差. |
|
在△ABC中,a、b、c分别是角A、B、C的对边,若(a+b+c)(b+c-a)=3bc. (1)求角A的值; (2)在(1)的结论下,若,求y=cos2x+sinA•sin2x的最值. |
|
关于函数f(x)=4sin(2x+)(x∈R),有下列命题: ①由f(x1)=f(x2)=0可得x1-x2必是π的整数倍; ②y=f(x)的表达式可改写为y=4cos(2x-); ③y=f(x)的图象关于点(-,0)对称; ④y=f(x)的图象关于直线x=-对称. 其中正确的命题的序号是 . |
|
图为计算13+23+…+103的程序框图,请填写图中的 ① ② . |
|
双曲线的左,右焦点分别为F1,F2,已知线段F1F2被点(b,0)分成5:1两段,则此双曲线的离心率为 . | |
= . | |
定义在R上的连续函数f(x),若(x-1)f'(x)<0,则下列各式正确的是( ) A.f(0)+f(2)>2f(1) B.f(0)+f(2)=2f(1) C.f(0)+f(2)<2f(1) D.f(0)+f(2)与f(1)大小不定 |
|
已知-1≤a≤1,-1≤b≤1,则关于x的方程x2+ax+b2=0有实根的概率是( ) A. B. C. D. |
|
已知直线m、n与平面α,β,给出下列三个命题: ①若m∥α,n∥α,则m∥n; ②若m∥α,n⊥α,则n⊥m; ③若m⊥α,m∥β,则α⊥β. 其中真命题的个数是( ) A.0 B.1 C.2 D.3 |
|
函数y=tanx+sinx-|tanx-sinx|在区间内的图象是( ) A. B. C. D. |
|