已知动点P到定直线l:x=2的距离与点P到定点F之比为. (1)求动点P的轨迹c的方程; (2)若点N为轨迹C上任意一点(不在x轴上),过原点O作直线AB交(1)中轨迹C于点A、B,且直线AN、BN的斜率都存在,分别为k1、k2,问k1•k2是否为定值? (3)若点M为圆O:x2+y2=4上任意一点(不在x轴上),过M作圆O的切线,交直线l于点Q,问MF与OQ是否始终保持垂直关系? |
|
某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆. 为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得). (1)求函数y=f(x)的解析式及其定义域; (2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多? |
|
如图,在三棱柱ABC-A1B1C1中,每个侧面均为正方形,D为底边AB的中点,E为侧棱CC1的中点,AB1与A1B的交点为O. (1)求证:CD∥平面A1EB; (2)求证:AB1⊥平面A1EB. |
|
已知:0<α<<β<π,cos(β-)=,sin(α+β)=. (1)求sin2β的值; (2)求cos(α+)的值. |
|
若不等式对于任意正实数x、y成立,则k的取值范围为 . | |
设x∈R,f(x)=,若不等式f(x)+f(2x)≤k对于任意的x∈R恒成立,则实数k的取值范围是 . | |
设点O是△ABC的外心,AB=13,AC=12,则= . | |
已知数列{an}满足a1=1,an+1-2an=2n,则an= | |
设一个椭圆的焦距、短轴长、长轴长成等比数列,则此椭圆的离心率e= . | |
将一枚骰子抛掷两次,若先后出现的点数分别为b,c,则方程x2+bx+c=0有实根的概率为 . | |