已知数列{an}是首项为,公比的等比数列,设,数列{cn}满足cn=an•bn. (1)求证:{bn}是等差数列; (2)求数列{cn}的前n项和Sn; (3)若对一切正整数n恒成立,求实数m的取值范围. |
|
已知抛物线C的顶点在原点,焦点为F(0,1). (Ⅰ)求抛物线C的方程; (Ⅱ)在抛物线C上是否存在点P,使得过点P的直线交C于另一点Q,满足PF⊥QF,且PQ与C在点P处的切线垂直?若存在,求出点P的坐标;若不存在,请说明理由. |
|
如图:在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,点M,N分别为BC,PA的中点,且PA=AB=2. (I)证明:BC⊥平面AMN; (II)求三棱锥N-AMC的体积; (III)在线段PD上是否存在一点E,使得NM∥平面ACE;若存在,求出PE的长;若不存在,说明理由. |
|
已知函数f (x)=sinxcosx-2cos2x+1. (Ⅰ)求f (); (Ⅱ)求函数f (x)图象的对称轴方程. |
|
给出下列四个命题: ①若集合A,B满足A∩B=A,则A⊆B; ②给定命题p,q,若“p∨q”为真,则“p∧q”为真; ③设a,b,m∈R,若a<b,则am2<bm2; ④若直线l1:ax+y+1=0与直线l2:x-y+1=0垂直,则a=1.其中真命题的个数是 .(写出所有真命题的个数) |
|
已知有公共焦点的椭圆与双曲线中心为原点,焦点在x轴上,左右焦点分别为F1,F2,且它们在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,双曲线的离心率的取值范围为(1,2).则该椭圆的离心率的取值范围是 . | |
已知程序框图如图所示,则执行该程序后输出的结果是 . |
|
某校为了解高三同学寒假期间学习情况,抽查了100名同学,统计他们每天平均学习时间,绘成频率分布直方图(如图).则这100名同学中学习时间在6~8小时内的同学为 人. |
|
在四边形ABCD中,,且•=0,则四边形ABCD是 .(填“矩形”、“菱形”、“直角梯形”、“等腰梯形”) | |
直线与圆x2+y2=1相交于A,B两点(其中a,b是实数),且△AOB是直角三角形(O是坐标原点),则点P(a,b)与点(0,1)之间距离的最大值为 . | |