如图,在正三棱柱ABC-A1B1C1中,BB1=BC=2,且M是BC的中点,点N在CC1上. (1)试确定点N的位置,使AB1⊥MN; (2)当AB1⊥MN时,求二面角M-AB1-N的大小. |
|
某社区举办2010年上海世博会知识宣传活动,进行现场抽奖,抽奖规则是:盒中装有10张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案,参加者每次从盒中抽取卡片两张,若抽到的两张都是“海宝”卡即可获奖. (1)活动开始后,一位参加者问:“盒中有几张‘海宝’卡?”,主持人笑说:“我只知道从盒中任抽两张都不是‘海宝’卡的概率是”,求抽奖都获奖的概率; (2)在(1)的条件下,现在甲、乙、丙、丁四人依次抽奖,抽后放回,另一个人再抽,求至多有一人获奖的概率. |
|
已知△ABC的周长为,且. (I)求边长a的值; (II)若S△ABC=3sinA,求cosA的值. |
|
设[x]表示不超过x的最大整数,如[1.5]=1,[-1.5]=2.若函数(a>0,a≠1),则g(x)=[f(x)-]+[f(-x)-]的值域为 | |
已知,且满足,则向量在方向上的投影等于 . | |
随机变量ξ服从正态分布N(50,16),若P(ξ<40)=0.3,则P(40<ξ<60)= . | |
在二项式(1-3x)n的展开式中,若所有项的系数之和等于64,那么在这个展开式中,x2项的系数是 .(用数字作答) | |
设集合A={y|y=2x+1,x∈R},B={y|y=-x2,x∈R},则集合A∩B= . | |
已知点P为双曲线(a>0,b>0)的右支上一点,F1、F2为双曲线的左、右焦点,使 (O为坐标原点),且||=||,则双曲线离心率为( ) A. B. C. D. |
|
某物流公司有6辆甲型卡车和4辆乙型卡车,此公司承接了每天至少运送280t货物的业务,已知每辆甲型卡车每天的运输量为30t,运输成本费用为0.9千元;每辆乙型卡车每天的运输量为40t,运输成本为1千元,则当每天运输成本费用最低时,所需甲型卡车的数量是( ) A.3 B.4 C.5 D.6 |
|