设函数f(x)=ax2+bx+c(a≠0),对任意实数t都有f(2+t)=f(2-t)成立,则函数值f(-1),f(1),f(2),f(5)中,最小的一个不可能是( ) A.f(-1) B.f(1) C.f(2) D.f(5) |
|
幂函数y=x-1,及直线y=x,y=1,x=1将直角坐标系第一象限分成八个“卦限”:Ⅰ,Ⅱ,Ⅲ,Ⅳ,Ⅴ,Ⅵ,Ⅶ,Ⅷ(如图所示),那么,幂函数的图象在第一象限中经过的“卦限”是…( ) A.Ⅳ,Ⅶ B.Ⅳ,Ⅷ C.Ⅲ,Ⅷ D.Ⅲ,Ⅶ |
|
设全集U=R,A={x|2x(x+3)<1},B={x|y=ln(-1-x)},则图中阴影部分表示的集合为( ) A.{x|x>0} B.{x|-3<x<0} C.{x|-3<x<-1} D.{x|x<-1} |
|
若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为y=2x2+1,值域为{5,19}的“孪生函数”共有( ) A.4个 B.6个 C.8个 D.9个 |
|
下列四个函数中,在区间(-1,0)上为减函数的是( ) A.y=log2|x| B.y=cos C. D. |
|
命题“对任意的x∈R,x3-x2+1≤0”的否定是( ) A.不存在x∈R,x3-x2+1≤0 B.存在x∈R,x3-x2+1≤0 C.存在x∈R,x3-x2+1>0 D.对任意的x∈R,x3-x2+1>0 |
|
函数是( ) A.奇函数 B.偶函数 C.非奇非偶函数 D.既是奇函数又是偶函数 |
|
设函数则不等式f(x)>f(1)的解集是( ) A.(-3,1)∪(3,+∞) B.(-3,1)∪(2,+∞) C.(-1,1)∪(3,+∞) D.(-∞,-3)∪(1,3) |
|
集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为( ) A.0 B.1 C.2 D.4 |
|
已知二次函数g(x)对任意实数x都满足g(x-1)+g(1-x)=x2-2x-1,且g(1)=-1. (1)求g(x)的表达式; (2)设1<m≤e,H(x)=g(x+)+mlnx-(m+1)x+,求证:H(x)在[1,m]上为减函数; (3)在(2)的条件下,证明:对任意x1,x2∈[1,m],恒有|H(x1)-H(x2)|<1. |
|