设直线ax+by+c=0的倾斜角为α,且sinα+cosα=0,则a,b满足( ) A.a+b=1 B.a-b=1 C.a+b=0 D.a-b=0 |
|
设全集U=R,集合M=,N={x||x|+|log3x|>|x+log3x|},则(CuM)∩N=( ) A.[0,1) B.(0,1] C.[0,2] D.(0,2) |
|
已知直线l经过点P(1,1),倾斜角, (1)写出直线l的参数方程; (2)设l与圆x2+y2=4相交与两点A,B,求点P到A,B两点的距离之积. |
|
选修4-5:不等式选讲 已知函数f(x)=|2x+1|-|x-3|. (Ⅰ)解不等式f(x)≤4; (Ⅱ)若存在x使得f(x)+a≤0成立,求实数a的取值范围. |
|
选修4-1:平面几何 如图,△ABC是内接于⊙O,AB=AC,直线MN切⊙O于点C,弦BD∥MN,AC与BD相交于点E. (1)求证:△ABE≌△ACD; (2)若AB=6,BC=4,求AE. |
|
已知函数(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1. (1)求直线l的方程及a的值; (2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数. |
|
设椭圆的离心率,右焦点到直线的距离,O为坐标原点. (I)求椭圆C的方程; (II)过点O作两条互相垂直的射线,与椭圆C分别交于A,B两点,证明点O到直线AB的距离为定值,并求弦AB长度的最小值. |
|
如图,已知等腰直角三角形RBC,其中∠RBC=90°,RB=BC=2.点A、D分别是RB、RC的中点,现将△RAD沿着边AD折起到△PAD位置,使PA⊥AB,连接PB、PC. (1)求证:BC⊥PB; (2)求二面角A-CD-P的平面角的余弦值. |
|
某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛得分的情况用如图所示的茎叶图表示 (1)求甲、乙两名运动员得分的中位数; (2)你认为哪位运动员的成绩更稳定? (3)如果从甲、乙两位运动员的7场得分中各随机抽取一场的得分,求甲的得分大于乙的得分的概率. |
|
已知函数的最小正周期为π (1)求f(x); (2)当时,求函数f(x)的值域. |
|