(文科做)右图是2008年某校举办的作文大赛上,七位评委为某参赛选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( ) A.78,2.3 B.80,1.9 C.85,1.6 D.86,2 |
|
一个正方体的各顶点均在同一球的球面上,若该球的体积为,则该正方体的表面积为( ) A.20 B.22 C.24 D.26 |
|
先将函数的周期变为为原来的4倍,再将所得函数的图象向右平移个单位,则所得函数的图象的解析式为( ) A.f(x)=2sin B. C.f(x)=2sin4 D. |
|
复数等于( ) A.1-i B.1+i C.-1+i D.-1-i |
|
函数的定义域是( ) A.(1,2) B.[1,4] C.[1,2) D.(1,2] |
|
设集合U={1,2,3,4,5},A={1,3},B={2,3,4},则(∁UA)∩B=( ) A.{1} B.{5} C.{2,4} D.{1,2,3,4} |
|
已知函f(x)=ex-x (e为自然对数的底数). (1)求f(x)的最小值; (2)不等式f(x)>ax的解集为P,若M={x|}且M∩P≠∅求实数a的取值范围; (3)已知n∈N+,且Sn=∫nf(x)dx,是否存在等差数列{an}和首项为f(I)公比大于0的等比数列{bn},使得a1+a2+…+an+b1+b2+…bn=Sn?若存在,请求出数列{an}、{bn}的通项公式.若不存在,请说明理由. |
|
设椭圆的焦点分别为F1(-1,0)、F2(1,0),右准线l交x轴于点A,且. (Ⅰ)试求椭圆的方程; (Ⅱ)过F1、F2分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图所示),试求四边形DMEN面积的最大值. |
|
如图,PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2,又AC=1,∠ACB=120°,AB⊥PC,直线AM与直线PC所成的角为60°. (Ⅰ)求证:平面PAC⊥平面ABC; (Ⅱ)求二面角M-AC-B的大小; (Ⅲ)求三棱锥P-MAC的体积. |
|
甲、乙两位学生参加数学竞赛培训,现分别从他们的培训期间参加的若干次预赛成中随机抽取8次,记录如下 甲:82,91,79,78,95,88,83,84;乙:92,95,80,75,83,80,90,85. (1)画出甲、乙两位学生成绩的茎叶图; (2)现要从中选派一人参加数学竞赛,从统计学角度,你认为派哪位学生参加合请说明理由. (3)若将频率视为概率,对学生甲在今后的三次数学竞赛成绩进行预测,记这三次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望Eξ. |
|