已知F1、F2是椭圆C:(a>b>0)的两个焦点,P为椭圆C上一点,且.若△PF1F2的面积为9,则b= .
|
|
若复数z满足z(1+i)=1-i(I是虚数单位),则其共轭复数= .
|
|
设函数,其中a>0,曲线y=f(x)在点P(0,f(0))处的切线方程为y=1,确定b、c的值.
|
|
已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1. (Ⅰ)求曲线C的方程 (Ⅱ)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有<0?若存在,求出m的取值范围;若不存在,请说明理由.
|
|
已知某地今年年初拥有居民住房的总面积为a(单位:m2),其中有部分旧住房需要拆除.当地有关部门决定每年以当年年初住房面积的10%建设新住房,同事也拆除面积为b(单位:m2)的旧住房. (Ⅰ)分别写出第一年末和第二年末的实际住房面积的表达式: (Ⅱ)如果第五年末该地的住房面积正好比今年年初的住房面积增加了30%,则每年拆除的旧住房面积b是多少?(计算时取1.15=1.6)
|
|
如图,在四面体ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1 (Ⅰ)设为P为AC的中点,Q为AB上一点,使PQ⊥OA,并计算的值; (Ⅱ)求二面角O-AC-B的平面角的余弦值.
|
|
为了了解一个小水库中养殖的鱼有关情况,从这个水库中多个不同位置捕捞出100条鱼,称得每条鱼的质量(单位:千克),并将所得数据分组,画出频率分布直方图(如图所示) (Ⅰ)在表格中填写相应的频率;
分组 | 频率 | [1.00,1.05) | | [1.05,1.10) | | [1.10,1.15) | | [1.15,1.20) | | [1.20,1.25) | | [1.25,1.30] | | (Ⅱ)估计数据落在(1.15,1.30)中的概率为多少; (Ⅲ)将上面捕捞的100条鱼分别作一记号后再放回水库,几天后再120条鱼,其中带有记号的鱼有6条,请根据这一情况来估计该水库中鱼的总条数.
|
|
已经函数 (Ⅰ)函数f(x)的图象可由函数g(x)的图象经过怎样变化得出? (Ⅱ)求函数h(x)=f(x)-g(x)的最小值,并求使用h(x)取得最小值的x的集合.
|
|