设各项均为正数的数列{an}满足. (Ⅰ)若,求a3,a4,并猜想a2cos的值(不需证明); (Ⅱ)记bn=a3a2…an(n∈N*),若bn≥2对n≥2恒成立,求a2的值及数列{bn}的通项公式. |
|
如图,M(-2,0)和N(2,0)是平面上的两点,动点P满足:|PM|+|PN|=6. (Ⅰ)求点P的轨迹方程; (Ⅱ)若,求点P的坐标. |
|
设函数f(x)=ax2+bx+c(a≠0),曲线y=f(x)通过点(0,2a+3),且在点(-1,f(-1)) 处的切线垂直于y轴. (Ⅰ)用a分别表示b和c; (Ⅱ)当bc取得最小值时,求函数g(x)=-f(x)e-x的单调区间. |
|
如图,在△ABC中,B=90°,AC=,D、E两点分别在AB、AC上.使,DE=3.现将△ABC沿DE折成直二角角,求: (Ⅰ)异面直线AD与BC的距离; (Ⅱ)二面角A-EC-B的大小(用反三角函数表示). |
|
甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为,且各局胜负相互独立.求: (Ⅰ)打满3局比赛还未停止的概率; (Ⅱ)比赛停止时已打局数ξ的分别列与期望Eξ. |
|
设△ABC的内角A,B,C的对边分别为a,b,c,且A=60°,c=3b.求: (Ⅰ)的值; (Ⅱ)cotB+cot C的值. |
|
某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如图所示的6个点A、B、C、A1、B1、C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有 种(用数字作答). |
|
直线l与圆x2+y2+2x-4y+a=0(a<3)相交于两点A,B,弦AB的中点为(0,1),则直线l的方程为 . | |
设Sn是等差数列{an}的前n项和,a12=-8,S9=-9,则S16= . | |
已知(a>0),则= . | |