如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P(,-),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为( ) A. B. C. D. |
|
中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为( ) A. B. C. D. |
|
曲线y=x3-2x+1在点(1,0)处的切线方程为( ) A.y=x-1 B.y=-x+1 C.y=2x-2 D.y=-2x+2 |
|
已知复数z=,则||=( ) A. B. C.1 D.2 |
|
平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于( ) A. B. C. D. |
|
已知集合A={x∈R||x|≤2}},,则A∩B=( ) A.(0,2) B.[0,2] C.{0,2] D.{0,1,2} |
|
设x=3是函数f(x)=(x2+ax+b)e3-x(x∈R)的一个极值点. (Ⅰ)求a与b的关系式(用a表示b),并求f(x)的单调区间; (Ⅱ)设a>0,.若存在ξ1,ξ2∈[0,4]使得|f(ξ1)-g(ξ2)|<1成立,求a的取值范围. |
|
设A,B分别为椭圆的左、右顶点,椭圆长半轴的长等于焦距,且x=4为它的右准线. (Ⅰ)求椭圆的方程; (Ⅱ)设P为右准线上不同于点(4,0)的任意一点,若直线AP,BP分别与椭圆相交于异于A,B的点M、N,证明点B在以MN为直径的圆内. (此题不要求在答题卡上画图) |
|
在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布N(70,100).已知成绩在90分以上(含90分)的学生有12名. (Ⅰ)试问此次参赛学生总数约为多少人? (Ⅱ)若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?可共查阅的(部分)标准正态分布表Φ(x)=P(x<x) |
|
如图,在底面边长为1,侧棱长为2的正四棱柱ABCD-A1B1C1D1中,P是侧棱CC1上的一点,CP=m. (Ⅰ)试确定m,使直线AP与平面BDD1B1所成角为60°; (Ⅱ)在线段A1C1上是否存在一个定点Q,使得对任意的m,D1Q⊥AP,并证明你的结论. |
|