设过点P(x,y)的直线分别与x轴的正半轴和y轴的正半轴交于A,B两点,点Q与点P关于y轴对称,O为坐标原点,若且,则点P的轨迹方程是( ) A. B. C. D. |
|
关于直线m,n与平面α,β,有以下四个命题: ①若m∥α,n∥β且α∥β,则m∥n; ②若m⊥α,n⊥β且α⊥β,则m⊥n; ③若m⊥α,n∥β且α∥β,则m⊥n; ④若m∥α,n⊥β且α⊥β,则m∥n; 其中真命题的序号是( ) A.①② B.③④ C.①④ D.②③ |
|
在的展开式中,x的幂的指数是整数的项共有( ) A.3项 B.4项 C.5项 D.9项 |
|
设,则的定义域为( ) A.(-4,0)∪(0,4) B.(-4,-1)∪(1,4) C.(-2,-1)∪(1,2) D.(-4,-2)∪(2,4) |
|
若△ABC的内角A满足,则sinA+cosA=( ) A. B. C. D. |
|
若互不相等的实数a,b,c成等差数列,c,a,b成等比数列,且a+3b+c=10,则a=( ) A.4 B.2 C.-2 D.-4 |
|
已知向量,是不平行于x轴的单位向量,且,则=( ) A.() B.() C.() D.(1,0) |
|
对定义域是Df.Dg的函数y=f(x).y=g(x), 规定:函数h(x)=. (1)若函数f(x)=,g(x)=x2,写出函数h(x)的解析式; (2)求问题(1)中函数h(x)的值域; (3)若g(x)=f(x+α),其中α是常数,且α∈[0,π],请设计一个定义域为R的函数y=f(x),及一个α的值,使得h(x)=cos4x,并予以证明. |
|
如图,已知抛物线C:y2=2px(p>0)的焦点为F,A是抛物线上横坐标为8且位于x轴上方的点. A到抛物线准线的距离等于10,过A作AB垂直于y轴,垂足为B,OB的中点为M(O为坐标原点). (Ⅰ)求抛物线C的方程; (Ⅱ)过M作MN⊥FA,垂足为N,求点N的坐标; (Ⅲ)以M为圆心,4为半径作圆M,点P(m,0)是x轴上的一个动点,试讨论直线AP与圆M的位置关系. |
|
假设某市2004年新建住房面积400万平方米,其中有250万平方米是中低价房,预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%,另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米,那么,到哪一年底, (1)该市历年所建中低价层的累计面积(以2004年为累计的第一年)将首次不少于4750万平方米? (2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%? |
|