在△ABC中,AB=AC,过点A的直线与其外接圆交于点P,交BC延长线于点D. (1)求证:; (2)若AC=3,求AP•AD的值. |
|
已知对任意的x>0恒有a1nx≤b(x-1)成立. (1)求正数a与b的关系; (2)若a=1,设f(x)=m+n,(m,n∈R),若1nx≤f(x)≤b(x-1)对∀x>0恒成立,求函数f(x)的解析式; (3)证明:1n(n!)>2n-4(n∈N,n≥2) |
|
已知定点,B是圆(C为圆心)上的动点,AB的垂直平分线与BC交于点E. (1)求动点E的轨迹方程; (2)设直线l:y=kx+m(k≠0,m>0)与E的轨迹交于P,Q两点,且以PQ为对角线的菱形的一顶点为(-1,0),求:△OPQ面积的最大值及此时直线l的方程. |
|
如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,△ABC为边长为2的正三角形,点P在A1B上,且AB⊥CP. (1)证明:P为A1B中点. (2)若A1B⊥AC1,求二面角B1-PC-B的余弦值. |
|
单位为30元/件的日用品上市以后供不应求,为满足更多的消费者,某商场在销售的过程中要求购买这种产品的顾客必须参加如下活动:摇动如图所示的游戏转盘(上面扇形的圆心角都相等),按照指针所指区域的数字购买商品的件数,在摇动转盘之前,顾客可以购买20元/张的代金券(限每人至多买12张),每张可以换一件该产品,如果不能按照指针所指区域的数字将代金券用完,那么余下的不能再用,但商场会以6元/张的价格回收代金券,每人只能参加一次这个活动,并且不能代替别人购买. (1)如果某顾客购买12张代金券,最好的结果是什么?出现这种结果的概率是多少? (2)求需要这种产品的顾客,能够购买到该产品件数ξ的分布列及均值. (3)如果某顾客购买8张代金券,求该顾客得到优惠的钱数的均值. |
|
2009年11月30时3时许,位于哈尔滨市南岗区东大直街323号的大世界商城发生火灾,为扑灭某着火点,现场安排了两支水枪,如图,D是着火点,A,B分别是水枪位置,已知米,在A处看到着火点的仰角为60°,∠ABC=30°,∠BAC=105°,求两支水枪的喷射距离至少是多少? |
|
小王制定一个玩飞行棋的游戏规则为:抛掷两枚均匀的正四面体骰子(四面依次标上数字1,2,3,4)掷得点数和之为5时才“可以起飞”,请你根据规则计算“可以起飞”的概率: . | |
已知双曲线C:-=1(a>0,b>0)的右焦点为F,过F做双曲线C的一条渐近线的垂线,与双曲线交于M,垂足为N,若M为线段FN的中点,则双曲线C的离心率为 . | |
给定下列四个命题: ①; ②,; ③已知随机变量X~N(μ,σ2),σ越小,则X集中在μ周围的概率越大; ④用相关指数来刻画回归的效果就越好,R2取值越大,则残差平方和越小,模型拟合的效果就越好.其中为真命题的是 . |
|
如图,它满足:(1)第n行首尾两数均为n;(2)图中的递推关系类似杨辉三角,则第n(n≥2)行的第2个数是 . |
|