设函数f(x)的定义域为D,值域为B,如果存在函数x=g(t),使得函数y=f(g(t))的值域仍然是B,那么,称函数x=g(t)是函数f(x)的一个等值域变换. (1)判断下列x=g(t)是不是f(x)的一个等值域变换?说明你的理由:(A)f(x)=2x+b,x∈R,x=t2-2t+3,t∈R;(B)f(x)=x2-x+1,x∈R,x=g(t)=2t,t∈R; (2)设f(x)=log2x(x∈R+),g(t)=at2+2t+1,若x=g(t)是f(x)的一个等值域变换,求实数a的取值范围,并指出x=g(t)的一个定义域; (3)设函数f(x)的定义域为D,值域为B,函数g(t)的定义域为D1,值域为B1,写出x=g(t)是f(x)的一个等值域变换的充分非必要条件(不必证明),并举例说明条件的不必要性. |
|
在数列{an}中,已知a1=1,a2=2,且数列{an}的奇数项依次组成公差为1的等差数列,偶数项依次组成公比为2的等比数列,数列{bn}满足,记数列{bn}的前n项和为Sn, (1)写出数列{an}的通项公式; (2)求Sn; (3)证明:当n≥6时,. |
|
已知椭圆E的方程为,长轴是短轴的2倍,且椭圆E过点;斜率为k(k>0)的直线l过点A(0,2),为直线l的一个法向量,坐标平面上的点B满足条件. (1)写出椭圆E方程,并求点B到直线l的距离; (2)若椭圆E上恰好存在3个这样的点B,求k的值. |
|
如图所示,在一条海防警戒线上的点A、B、C处各有一个水声监测点,B、C两点到点A的距离分别为20千米和50千米.某时刻,B收到发自静止目标P的一个声波信号,8秒后A、C同时接收到该声波信号,已知声波在水中的传播速度是1.5千米/秒. (1)设A到P的距离为x千米,用x表示B,C到P的距离,并求x的值; (2)求P到海防警戒线AC的距离(结果精确到0.01千米). |
|
已知z1、z2为复数,、, 若是实数,求|z2|的值. |
|
若函数f(x)=kax-a-x,(a>0,a≠1)在(-∞,+∞)上既是奇函数,又是增函数,则g(x)=loga(x+k)的是( ) A. B. C. D. |
|
三棱锥P-ABC的侧棱PA、PB、PC两两互相垂直,侧面面积分别是6,4,3,则三棱锥的体积是( ) A.4 B.6 C.8 D.10 |
|
将函数f(x)=cosx-sinx的图象向右平移a(a>0)个单位,所得图象的函数为偶函数,则a的最小值为. A. B. C. D. |
|
设a,b∈R,则“a+b>2且ab>1”是“a>1且b>1”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 |
|
设函数F(x)和f(x)都在区间D上有定义,若对D的任意子区间[u,v],总有[u,v]上的实数p和q,使得不等式f(p)≤≤f(q)成立,则称F(x)是f(x)在区间D上的甲函数,f(x)是F(x)在区间D上的乙函数.已知F(x)=x2-3x,x∈R,那么F(x)的乙函数f(x)= . | |