相关试题
当前位置:首页 > 高中数学试题
如图,已知四棱锥P-ABCD的底面ABCD是边长为1的正方形,PD⊥底面ABCD,且PD=2.
(1)若点E、F分别在棱PB、AD上,且manfen5.com 满分网=4manfen5.com 满分网manfen5.com 满分网=4manfen5.com 满分网,求证:EF⊥平面PBC;
(2)若点G在线段PA上,且三棱锥G-PBC的体积为manfen5.com 满分网,试求线段PG的长.

manfen5.com 满分网
△ABC中,三个内角A、B、C所对的边分别为a、b、c,若B=60°,a=(manfen5.com 满分网-1)c.
(1)求角A的大小;
(2)已知当x∈[manfen5.com 满分网manfen5.com 满分网]时,函数f(x)=cos2x+asinx的最大值为3,求△ABC的面积.
给出下列命题:
(1)三点确定一个平面;
(2)在空间中,过直线外一点只能作一条直线与该直线平行;
(3)若平面α上有不共线的三点到平面β的距离相等,则α∥β;
(4)若直线a、b、c满足a⊥b、a⊥c,则b∥c.
其中正确命题的个数是   
在实数数列{an}中,已知a1=0,|a2|=|a1-1|,|a3|=|a2-1||,…,|an|=|an-1-1|则a1+a2+a3+a4的最大值为   
已知函数manfen5.com 满分网,若f(x)<3,则x的取值范围是   
在一个水平放置的底面半径为manfen5.com 满分网cm的圆柱形量杯中装有适量的水,现放入一个半径为Rcm的实心铁球,球完全浸没于水中且无水溢出,若水面高度恰好上升Rcm,则R=    cm.
设a>1,若仅有一个常数c使得对于任意的x∈[a,2a],都有y∈[a,a2]满足方程logax+logay=c,这时,a的取值的集合为   
请将下面不完整的命题补充完整,并使之成为真命题:若函数f(x)=2x-1的图象与g(x)的图象关于直线     对称,则g(x)=    .(注:填上你认为可以成为真命题的一种情形即可)
设向量manfen5.com 满分网=(-2,1),manfen5.com 满分网=(λ,-1)(λ∈R),若manfen5.com 满分网manfen5.com 满分网的夹角为钝角,则λ的取值范围是   
曲线manfen5.com 满分网的长度是   
共1028964条记录 当前(63690/102897) 首页 上一页 63685 63686 63687 63688 63689 63690 63691 63692 63693 63694 63695 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.