设直线3x+y+m=0与圆x2+y2+x-2y=0相交于P、Q两点,O为坐标原点,若OP⊥OQ,求m的值. |
|
已知矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为:x-3y-6=0,点T(-1,1)在AD边所在直线上. (1)求矩形ABCD外接圆的方程; (2)求矩形ABCD外接圆中,过点G(1,1)的最短弦EF所在的直线方程. |
|
设直线l的方程为(a+1)x+y+2-a=0(a∈R). (1)若l在两坐标轴上的截距相等,求l的方程; (2)若l不经过第二象限,求实数a的取值范围. |
|
已知点M(a,b)在直线3x+4y=15上,则的最小值为 . | |
圆C的半径为1,圆心在第一象限,与y轴相切,与x轴相交于A、B,|AB|=,则该圆的标准方程是 . | |
从点(2,3)射出的光线沿与直线x-2y=0平行的直线射到y轴上,则经y轴反射的光线所在的直线方程为 . | |
若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为 . |
|
若椭圆的短轴为AB,它的一个焦点为F1,则满足△ABF1为等边三角形的椭圆的离心率是 . | |
若直线x-3y+7=0与直线3x+my-5=0互相垂直,则实数m= . | |
如图,在透明塑料制成的长方体ABCD-A1B1C1D1容器内灌进一些水,将容器底面一边BC固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法: ①水的部分始终呈棱柱状; ②水面四边形EFGH的面积不改变; ③棱A1D1始终与水面EFGH平行; ④当E∈AA1时,AE+BF是定值. 其中正确说法是( ) A.①②③ B.①③ C.①②③④ D.①③④ |
|