f(x)对于任意实数x满足条件f(x+2)=,若f(1)=-5,则f(f(5))=( ) A.-5 B. C. D.5 |
|
下列函数中,在其定义域内既是奇函数又是减函数的是( ) A.y=-x3,x∈R B.y=sinx,x∈R C.y=x,x∈R D. |
|
“x2-3x+2>0”是“x<1或x>4”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 |
|
用反证法证明命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”则假设的内容是( ) A.a,b都能被5整除 B.a,b都不能被5整除 C.a,b不能被5整除 D.a,b有1个不能被5整除 |
|
设集合,,则M∪N=( ) A.ϕ B.M C.Z D.{0} |
|
设全集U={a、b、c、d},A={a、c},B={b},则A∩(CuB)=( ) A.∅ B.{a} C.{c} D.{a,c} |
|
已知函数f(x)=ln(ex+a)(a为常数)是实数集R上的奇函数,函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数 (I)求a的值; (II)求λ的取值范围; (III)若g(x)≤t2+λt+1在x∈[-1,1]上恒成立,求t的取值范围. |
|
在平面直角坐标系xOy中,点P到两点,的距离之和等于4,设点P的轨迹为C. (Ⅰ)写出C的方程; (Ⅱ)设直线y=kx+1与C交于A,B两点.k为何值时⊥?此时的值是多少?. |
|
已知函数f(x)=x3+mx2+nx-2的图象过点(-1,-6),且函数g(x)=f′(x)+6x的图象关于y轴对称. (Ⅰ)求m、n的值及函数y=f(x)的单调区间; (Ⅱ)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值. |
|
中心在原点,一焦点为F1(0,5)的椭圆被直线y=3x-2截得的弦的中点横坐标是,求此椭圆的方程. |
|